Kinetic and Thermodynamic Study of Arsenic (V) Adsorption on P and W Aluminum Functionalized Zeolites and Its Regeneration

Abstract

In the “Laguna” region of Coahuila state, Mexico like other places in the world, the groundwater needs to be treated to meet the quality required for human consumption. The study had probed that a Mexican fly ash can be used as a raw material to obtain effective low cost adsorbents for drinking water treatment, as well evaluated the effects of pH, ion coexistence, dose, arsenic (As) concentration and temperature on the As(V) uptake by using P and W modified zeolites (PMOD and WMOD) obtained from a Mexican fly ash. The As(V) adsorption capacity of the WMOD zeolite was not affected by pH and As(V) concentrations in aqueous solution was achieved <0.01 mg/L in the studied pH range; however, the As(V) removal by using PMOD zeolite decreased at high pH values. Carbonate concentration had a negative effect on the As(V) uptake of both zeolites but this effect was higher for the PMOD zeolite. The maximum adsorption capacities (Qmax) were 76.11 and 44.44 mg of As(V)/g of zeolite for the WMOD and the PMOD zeolites, respectively. The adsorption process was endothermic, spontaneous and occurred by chemical exchange. The experimental data were best interpreted by a pseudo-second order kinetic model. The WMOD zeolite showed a higher adsorption capacity and rate than the PMOD even at the highest evaluated As(V) concentration. The adsorption capacity of the regenerated WMOD zeolite was similar to the original zeolite. Because of the high As(V) adsorption capacity, chemical stability and regenerability, the WMOD zeolite is potentially useful as low-cost adsorbent for As(V) removal from aqueous effluents.

Share and Cite:

A. Ramírez, P. Melo, J. Robles, M. Castro, S. Khamkure and R. León, "Kinetic and Thermodynamic Study of Arsenic (V) Adsorption on P and W Aluminum Functionalized Zeolites and Its Regeneration," Journal of Water Resource and Protection, Vol. 5 No. 8A, 2013, pp. 58-67. doi: 10.4236/jwarp.2013.58A009.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] C. Perego, R. Bagatin, M. Tagliabue and R. Vignola, “Zeolites and Related Mesoporous Materials for Multi-Talented Environmental Solutions,” Microporous and Mesoporous Materials, Vol. 166, No. 1, 2013, pp. 37-49. doi:10.1016/j.micromeso.2012.04.048
[2] Comisión Nacional del Agua, “Estadísticas del Agua en México,” 2013. http://www.conagua.gob.mx/CONAGUA07/Noticias/EAM2010.pdf
[3] M. A. Armienta and N. Segovia, “Arsenic and Fluoride in the Groundwater of Mexico,” Environmental Geochemistry and Health, Vol. 30, No. 4, 2008, pp. 345-353. doi:10.1007/s10653-008-9167-8
[4] M. M. Meza, M. J. Kopplin, J. L. Burgess and A. J. Gandolfi, “Arsenic Drinking Water Exposure and Urinary Excretion among Adults in the Yaqui Valley, Sonora, Mexico,” Environmental Research, Vol. 96, No. 2, 2004, pp. 119-126. doi:10.1016/j.envres.2003.08.010
[5] M. F. Díaz, “Arsenic in Scales of Drinking Water Distribution Networks in the North of Mexico and Its Detachment,” 2013. http://www.agualatinoamerica.com/docs/pdf/030405%20Nivel%203.pdf
[6] T. Yoshida, H. Yamauchi and G. Fan-Sun, “Chronic Health Effects in People Exposed to Arsenic via the Drinking Water: Dose-Response Relationships in Review,” Toxicology Applied Pharmacology, Vol. 198, No. 3, 2004, pp. 243-252. doi:10.1016/j.taap.2003.10.022
[7] H. K. Hansen, P. Nunez and R. Grandon, “Electrocoagulation as a Remediation Tool for Wastewaters Containing Arsenic,” Minerals Engineering, Vol. 19, No. 5, 2006, pp. 521-524. doi:10.1016/j.mineng.2005.09.048
[8] I. Peleanu, M. Zaharescu, I. Rau, M. Crisan, A. Jitianu and A. Meghea, “Nanocomposite Materials for As(V) Removal by Magnetically Intensified Adsorption,” Separation Science Technology, Vol. 37, No. 16, 2002, pp. 3693-3701. doi:10.1081/SS-120014827
[9] T. S. Anirudhan and M. R. Unnithan, “Arsenic(V) Removal from Aqueous Solutions Using an Anion Exchanger Derived from Coconut Coir Pith and Its Recovery,” Chemosphere, Vol. 66, No. 1, 2007, pp. 60-66.
[10] T. F. Lin, C. C. Liu and W. H. Hsieh, “Adsorption KinetIcs and Equilibrium of Arsenic onto an Iron-Based Adsorbent and an Ion Exchange Resin,” Water Science Technology Water Supply, Vol. 6, No. 2, 2006, pp. 201-207.
[11] A. E. Pagana, S. D. Sklari, E. S. Kikkinides and V. T. Zaspalis, “Microporous Ceramic Membrane Technology for the Removal of Arsenic and Chromium Ions from Contaminated Water,” Microporous and Mesoporous Materials, Vol. 110, No. 1, 2008, pp. 150-156. doi:10.1016/j.micromeso.2007.10.013
[12] C. L. Chuang, M. Fan, M. Xu, R. C. Brown, S. Sung, B. Saha and C. P. Huang, “Adsorption of Arsenic(V) by Activated Carbon Prepared from Oat Hulls,” Chemosphere, Vol. 61, No. 4, 2005, pp. 478-483. doi:10.1016/j.chemosphere.2005.03.012
[13] S. Bang, M. Patel, L. Lippincott and X. Meng, “Removal of Arsenic from Groundwater by Granular Titanium Dioxide Adsorbent,” Chemosphere, Vol. 60, No. 3, 2005, pp. 389-397. doi:10.1016/j.chemosphere.2004.12.008
[14] M. P. Elizalde-González, J. Mattusch and R. Wennrich, “Application of Natural Zeolites for Preconcentration of Arsenic Species in Water Samples,” Journal Environmental Monitoring, Vol. 3, No. 1, 2001, pp. 22-26. doi:10.1039/b006636m
[15] C. Y. Chen, T. H. Chang, J. T. Kuo, Y. F. Chen and Y. C. Chung, “Characteristics of Molybdate-Impregnated Chitosan Beads (MICB) in Terms of Arsenic Removal from Water and the Application of a MICB-Packed Column to Remove Arsenic from Wastewater,” Bioresource Technology, Vol. 99, No. 16, 2008, pp. 7487-7494. doi:10.1016/j.biortech.2008.02.015
[16] H. K. Hansen, A. Ribeiro and E. Mateus, “Biosorption of Arsenic(V) with Lessonia Nigrescens,” Minerals Engineering, Vol. 19, No. 5, 2006, pp. 486-490. doi:10.1016/j.mineng.2005.08.018
[17] S. Kuriakose, T. S. Singh and K. K. Pant, “Adsorption of As(III) from Aqueous Solution onto Iron Oxide Impregnated Activated Alumina,” Water Quality Research, Journal of Canada, Vol. 39, No. 3, 2004, pp. 258-266. http://www.cawq.ca/cgi-bin/journal/abstract.cgi?language=english&pk_article=27
[18] S. Kundu, S. S. Kavalakatt, A. Pal, S. K. Ghosh, M. Mandal and T. Pal, “Removal of Arsenic Using Hardened Paste of Portland Cement: Batch Adsorption and Column Study,” Water Research, Vol. 38, No. 17, 2004, pp. 3780-3790. doi:10.1016/j.watres.2004.06.018
[19] O. Eljamal, K. Sasaki and T. Hirajima, “Sorption Kinetic of Arsenate as Water Contaminant on Zero Valent Iron,” Journal of Water Resource and Protection, Vol. 5, No. 6, 2013, pp. 563-567. doi:10.4236/jwarp.2013.56057
[20] S. Shevade and R. G. Ford, “Use of Synthetic Zeolites for Arsenate Removal from Pollutant Water,” Water Research, Vol. 38, No. 14-15, 2004, pp. 3197-3204. doi:10.1016/j.watres.2004.04.026
[21] C. Resmini, H. Gracher, N. Cabral, E. Angioletto, A. Resmini, A. M. Bernardin, M. R. da Rocha and L. da Silva, “Synthesis of 4A Zeolites from Kaolin for Obtaining 5A Zeolites through Ionic Exchange for Adsorption of Arsenic,” Materials Science and Engineering: B, Vol. 177, No. 4, 2012, pp. 345-349. doi:10.1016/j.mseb.2012.01.015
[22] A. M. Ziyath, P. Mahbub, A. Goonetilleke, M. O. Adebajo, S. Kokot and A. Oloyede, “Influence of Physical and Chemical Parameters on the Treatment of Heavy Metals in Polluted Stormwater Using Zeolite—A Review,” Journal of Water Resource and Protection, Vol. 3, No. 20, 2011, pp. 758-767. doi:10.4236/jwarp.2011.310086
[23] A. Medina, P. Gamero, J. M. Almanza, A. Vargas, A. Montoya, G. Vargas and M. Izquierdo, “Fly Ash from a Mexican Mineral Coal II. Source of W Zeolite and Its Effectiveness in Arsenic (V) Adsorption,” Journal Hazardous Materials, Vol. 181, No. 1-3, 2010, pp. 91-104. doi:10.1016/j.jhazmat.2010.04.102
[24] X. Querol, N. Moreno, J. C. Umana, A. Alastuey, E. Hernandez, A. Lopez-Soler and F. Plana, “Synthesis of Zeolites from Coal Fly Ash: An Overview,” International Journal of Coal Geology, Vol. 50, No. 1-4, 2002, pp. 413-423. doi:10.1016/S0166-5162(02)00124-6
[25] J. Li, Z. Zhang, W. Khunjar and K. Zhao, “Enhanced Nutrient Sequestration from Swine Wastewater Using Zeolite Synthesized from Fly Ash Integrated with Surface Amendment Technique,” Fuel, Vol. 111, No. 20, 2013, pp. 57-65. doi:10.1016/j.fuel.2013.04.019
[26] N. M. Musyoka, L. Petrik and E. Hums, “Synthesis of Zeolite A, X and P from a South African Coal Fly Ash,” Advanced Materials Research, Vol. 512-515, 2012, pp. 1757-1762. doi:10.4028/www.scientific.net/AMR.512-515.1757
[27] M. S. Onyango, Y. Kojima, O. Aoyi, E. C. Bernardo and H. Matsuda, “Adsorption Equilibrium Modeling and Solution Chemistry Dependence of Fluoride Removal from Water by Trivalent-Cation-Exchanged Zeolite F-9,” Journal of Colloid and Interface Science, Vol. 279, No. 2, 2004, pp. 341-350. doi:10.1016/j.jcis.2004.06.038
[28] P. Kumar, P. D. Jadhav, S. S. Rayalu and S. Devotta, “Surface-Modified-Zeolite a Sequestration of Arsenic and Chromium Anions,” Current Science, Vol. 92, No. 4, 2007, pp. 512-517. http://www.currentscience.ac.in/cs/Downloads/article_id_092_04_0512_0517_0.pdf
[29] S. S. Gupta and K. G. Bhattacharyya, “Kinetics of Ad-Sorption of Metal Ions on Inorganic Materials: A Review,” Advances in Colloid and Interface Science, Vol. 162, No. 1-2, 2011, pp. 39-58. doi:10.1016/j.cis.2010.12.004
[30] D. Mohan and C. U. Pittman, “Arsenic Removal from Water/Wastewater Using Adsorbents—A Critical Review,” Journal Hazardous Materials, Vol. 142, No. 1-2, 2007, pp. 1-53. doi:10.1016/j.jhazmat.2007.01.006
[31] A. Medina, P. Gamero, X. Querol, N. Moreno, B. de León, M. Almanza, G. Vargas, M. Izquierdo and O. Font, “Fly Ash from a Mexican Mineral Coal I: Mineralogical and Chemical Characterization,” Journal Hazardous Materials, Vol. 181, No. 1-3, 2010, pp. 82-90. doi:10.1016/j.jhazmat.2010.04.096
[32] Y. Xu, A. Ohki and S. Maeda, “Adsorption of As(V) by Used Aluminum-Loaded Shirasu Zeolites,” Chemistry Letters, Vol. 27, No. 10, 1998, pp. 1015-1016. doi:10.1246/cl.1998.1015
[33] C. Collela, D. Caputo, B. de Genaro and B. E. Torraca, “Ion Exchange Equilibria in a Synthetic Merlinoite,” Studies and Surface Science and Catalysis, Vol. 154, 2004, pp. 1920-1928. doi:10.1016/S0167-2991(04)80728-6
[34] B. M. Skofteland, O. H. Ellestad and K. P. Lillerud, “Potassium Merlinoite Crystallization, Structural and Thermal Properties,” Microporous Mesoporous Materials, Vol. 43, No. 1, 2001, pp. 61-71. doi:10.1016/S1387-1811(00)00347-4
[35] A. J. Celestian, J. B. Parise, A. Tripathi, A. Kvick and G. M. V. Vaughan, “(K4Li4)Al8Ge8O32·8H2O: An Li+-Exchanged Potassium Alumino-Germanate with the Zeolite Gismondine (GIS) Topology,” Acta Crystallographic Section C, Vol. 59, No. 8, 2003, pp. i74-i76. doi:10.1107/S0108270103011739
[36] A. Tripathi, J. B. Parise, S. J. Kim, Y. Lee, G. M. Johnson and Y. S. Uh, “Structural Changes and Cation Site Ordering in Na and K Forms of Aluminogermanates with the Zeolite Gismondine Topology,” Chemistry Materials, Vol. 12, No. 12, 2000, pp. 3760-3769. doi:10.1021/cm000459s
[37] J. W. Mortier, “Compilation of Extra Framework Sites in Zeolites,” Butterworth Scientific Limited, Surrey, 1982.
[38] A. Kilislioglu and B. Bilgin, “Thermodynamic and Kinetic Investigations of Uranium Adsorption on Amberlite IR-118H Resin,” Applied Radiation and Isotopes, Vol. 58, No. 2, 2003, pp. 155-160. doi:10.1016/S0969-8043(02)00316-0
[39] T. M. Suzuki, J. O. Bomani, H. Matsunaga and T. Yokoyama, “Preparation of Porous Resin Loaded with Crystalline Hydrous Zirconium Oxide and Its Application to the Removal of Arsenic,” Reactive and Functional Polymers, Vol. 43, No. 1-2, 2000, pp. 165-172. doi:10.1016/S1381-5148(99)00038-3
[40] P. B. Bhakat, A. K. Gupta, S. Ayoob and S. Kundu, “Investigations on Arsenic(V) Removal by Modified Calcined Bauxite,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 281, No. 1-3, 2006, pp. 237-245. doi:10.1016/j.colsurfa.2006.02.045
[41] F. Di Natale, A. Erto, A. Lancia and D. Musmarra, “Experimental and Modelling Analysis of As(V) Ions Adsorption on Granular Activated Carbon,” Water Research, Vol. 42, No. 8-9, 2007, pp. 2007-2016. doi:10.1016/j.watres.2007.12.008
[42] E. Oguz, “Equilibrium Isotherms and Kinetics Studies for the Sorption of Fluoride on Light Weight Concrete Materials,” Colloids and Surface A. Physicochemical and Engineering Aspects, Vol. 295, No. 1-3, 2007, pp. 258-263. doi:10.1016/j.colsurfa.2006.09.009
[43] O. Yavuz, Y. Altunkaynak and F. Güzel, “Removal of Copper, Nickel, Cobalt and Manganese from Aqueous Solution by Kaolinite,” Water Research, Vol. 37, No. 4, 2003, pp. 948-952. doi:10.1016/S0043-1354(02)00409-8
[44] D. Mohan and K. P. Singh, “Single- and Multi-Component Adsorption of Cadmium and Zinc Using Activated Carbon Derived from Bagasse—An Agricultural Waste,” Water Research, Vol. 36, No. 9, 2002, pp. 2304-2318. doi:10.1016/S0043-1354(01)00447-X
[45] Y. S. Ho and G. A. McKay, “A Comparison of Chemisorption Kinetic Models Applied to pollutant Removal on Various Sorbents,” Transactions of the Institution of Chemical Engineers, Vol. 76, No. 2, 1998, pp. 332-340. doi:10.1205/095758298529696
[46] G. McKay, M. S. Otterburn and A. G. Sweeney, “Surface Mass Transfer Processes during Color Removal from Effluent Using Silica,” Water Research, Vol. 15, No. 3, 1981, pp. 327-331. doi:10.1016/0043-1354(81)90036-1
[47] S. T. Sarvinder and K. K. Pant, “Equilibrium, Kinetics and Thermodynamic Studies for Adsorption of As(III) on Activated Alumina,” Separation Purification Technology, Vol. 36, No. 2, 2004, pp. 139-147. doi:10.1016/S1383-5866(03)00209-0

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.