Role of Free Fatty Acids in Physiological Conditions and Mitochondrial Dysfunction

DOI: 10.4236/fns.2013.49A1002   PDF   HTML   XML   4,647 Downloads   9,729 Views   Citations

Abstract

The role of free fatty acids (FFAs) as a source of energy and their functions in energy transport within the body are well established. Equally important is a role that FFAs play in oxidative stress following cell membrane depolarization. FFAs are physiologically active, not only as nutritional components, but also as molecules involved in cell signaling and stabilization of membranes via palmitoylation and myristoylation. Protein palmitoylation is involved in numerous cellular processes, including apoptosis, and neuronal transmission. Besides nuclear peroxisome proliferator-activated receptors that mediate the biological effects of FFAs, G protein-coupled receptors (GPCRs) that are activated by FFA, have been recently identified. Those multiple FFA receptors (FFARs), which function on the cell surface as activated FFAs, play significant roles in the regulation of energy metabolism and mediate a wide range of important metabolic processes. FFARs have been targeted in drug development for the treatment of type 2 diabetes and metabolic syndrome. FFAs upregulate transcription of uncoupling proteins, increasing their expression in brain, cardiac, and skeletal muscle that may be protective or cytotoxic, depending on the cellular energy state. Recently, FFA effects on the endothelial function and dysfunction are being recognized. FFAs play a key role in endothelium-dependent nitric oxide production. A disturbance of endothelial function, due to an imbalance in production and release of relaxing and constricting factors, has implications in the development of cardiovascular problems, such as hypertension, as well as neurotoxicity following loss of blood-brain barrier integrity. This review presents information on broad range of FFAs actions of prime importance for physiological processes. Understanding of FFA functions in the body is crucial for developing new therapeutic strategies against several metabolic disorders.

Share and Cite:

Z. Binienda, S. Sarkar, S. Silva-Ramirez and C. Gonzalez, "Role of Free Fatty Acids in Physiological Conditions and Mitochondrial Dysfunction," Food and Nutrition Sciences, Vol. 4 No. 9A, 2013, pp. 6-15. doi: 10.4236/fns.2013.49A1002.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] W. F. Ganong, “Review of Medical Physiology,” Lange Medical Publications, Los Altos, 1985.
[2] C. Wilcox, J. S. Hu and E. N. Olson, “Acylation of Pro teins with Myristic Acid Occurs Cotranslationally,” Sci ence, Vol. 238, No. 4831, 1987, pp. 1275-1278. doi:10.1126/science.3685978
[3] I. Izawa, M. Nishizawa, Y. Hayashi and M. Inagaki, “Palmitoylation of ERBN Is Required for Its Plasma Membrane Localization,” Genes Cells, Vol. 13, No. 7, 2008, pp. 691-701.
doi:10.1111/j.1365-2443.2008.01198.x
[4] Z. Xie, W. T. Ho and J. H. Exton, “Requirements and Effects of Palmitoylation of Rat PLD1,” Journal of Bio logical Chemistry, Vol. 276, No. 12, 2001, pp. 9383-9391. doi:10.1074/jbc.M009425200
[5] N. D. Holliday and H. M. Cox, “Control of Signaling Efficacy by Palmitoylation of the Rat Y1 Receptor,” Brit ish Journal of Pharmacology, Vol. 139, No. 3, 2003, pp. 501-512. doi:10.1038/sj.bjp.0705276
[6] K. Huang and A. D. El-Husseini, “Modulation of Neu ronal Protein Trafficking and Function by Palmitoyla tion,” Current Opinion in Neurobiology, Vol. 15, No. 5, 2005, pp. 527-535. doi:10.1016/j.conb.
2005.08.001
[7] Z. Binienda and A. Virmani, “The Mitochondriotropic Effects of L-Carnitine and Its Esters in the Central Nerv ous System,” Current Medical Chemistry—Central Ner vous System Agents, Vol. 3, No. 4, 2003, 275-282. doi:10.2174/1568015033477659
[8] N. Fillmore, O. Alrob and G. D. Lopaschuk, “Animal Lipid Biochemistry. Fatty Acid β-Oxidation. Overview,” 2011. http://lipidlibrary.aocs.org/animbio/fa-oxid/index.htm
[9] H. Bays, L. Mandarino and R. A. DeFronzo, “Role of the Adipocyte, Free Fatty Acids, and Ectopic Fat in Patho genesis of Type 2 Diabetes Mellitus: Peroxisomal Prolif erator-Activated Receptor Agonists Provide a Rational Therapeutic Approach,” Journal of Clinical Endocri nology and Metabolism, Vol. 89, No. 2, 2004, pp. 463 478. doi:10.1210/jc.2003-030723
[10] J. S. Pankow, B. B. Duncan, M. I. Schmidt, C. M. Bal lantyne, D. J. Couper, R. C. Hoogeveen and S. H. Golden, “Fasting Plasma Free Fatty Acids and Risk of Type 2 Diabetes,” The Atherosclerosis Risk in Communities study. Diabetes Care, Vol. 27, No. 1, 2004, pp. 77-82. doi:10.2337/diacare.27.1.77
[11] A. M. Poynten, S. K. Gan, A. D. Kritekos, L. V. Camp bell and D. J. Chisholm, “Circulating Fatty Acids, Non High Density Lipoprotein Cholesterol, and Insulin-In fused Fat Oxidation Acutely Influence Whole Body Insu lin Sensitivity in Nondiabetic Men,” Journal of Clinical Endocrinology and Metabolism, Vol. 90, No. 2, 2005, pp. 1035-1040. doi:10.1210/jc.2004-0943
[12] K. M. Utzschneider and S. E. Kahn, “Review: The Role of Insulin Resistance in Nonalcoholic Fatty Liver Disease,” Journal of Clinical Endocrinology and Metabolism, Vol. 91, No. 12, 2006, pp. 4753-4761. doi:10.1210/jc.2006-0587
[13] P. A. Sarafidis and G. L. Bakris, “Non-Esterified Fatty Acids and Blood Pressure Elevation: A Mechanism for Hypertension in Subjects with Obesity/Insulin Resistance,” Journal of Human Hypertension, Vol. 21, 2007, pp. 12-19. doi:10.1038/sj.jhh.1002103
[14] W. C. Stanley, F. A. Recchia and G. D. Lopaschuk, “Myocardial Substrate Metabolism in the Normal and Failing Heart,” Physiological Reviews, Vol. 85, No. 3, 2005, pp. 1093-1129. doi:10.1152/
physrev.00006.2004
[15] M. F. Oliver, “Sudden Cardiac Death: The Lost Fatty Acid Hypothesis,” QJM: An International Journal of Medicine, Vol. 99, No. 10, 2006, pp. 701-709. doi:10.1093/qjmed/hcl084
[16] J. F. Oram and K. E. Bornfeldt, “Direct Effects of Long Chain Non-Esterified Fatty Acids on Vascular Cells and Their Relevance to Macrovascular Complications of Diabetes,” Frontiers in Bioscience: A Journal and Virtual Library, Vol. 9, 2004, pp. 1240-1253. doi:10.2741/1300
[17] B. Hufnagel, M. Dworak, M. Soufi, Z. Mester, Y. Zhu, J. R. Schaefer, S. Klumpp and J. Krieglstein, “Unsaturated Fatty Acids Isolated from Human Lipoproteins Activate Protein Phosphatase Type 2Cbeta and Induce Apoptosis in Endothelial Cells,” Atherosclerosis, Vol. 180, No. 2, 2005, pp. 245-254. doi:10.1016/j.atherosclerosis.2004.12.021
[18] E. E. Lloyd, J. W. Gaubatz, A. R. Burns and H. J. Pow nall, “Sustained Elevations in NEFA Induce Cyclooxy genase-2 Activity and Potentiate THP-1 Macrophage Foam Cell Formation,” Atherosclerosis, Vol. 192, No. 1, 2007, pp. 49-55. doi:10.1016/j.atherosclerosis.2006.06.014
[19] E. M. Nemoto, R. W. Evans and P. M. Kochanek, “Free Fatty Acids Liberation in the Pathogenesis and Therapy of Ischemic Brain Damage,” In: N. G. Bazan, P. Braquet and M. D. Ginsburg, Eds., Neurochemical Correlates of Cerebral Ischemia, Pleanum Press, New York, 1992, pp. 183-218. doi:10.1007/978-1-4615-3312-2_10
[20] M. Erecińska and D. Nelson, “Effects of 3-Nitropropionic Acid on Synaptosomal Energy and Transmitter Metabo lism: Relevance to Neurodegenerative Brain Diseases,” Journal of Neurochemistry, Vol. 63, No. 3, 1994, pp. 1033-1041. doi:10.1046/j.1471-4159.1994.63031033.x
[21] V. G. Desai, R. J. Feuers, R. W. Hart and S. F. Ali, “MPP+-Induced Neurotoxicity in Mouse Is Age-Depen dent: Evidenced by the Selective Inhibition of Complexes of Electron Transport,” Brain Research, Vol. 715, No. 1-2, 1996, pp. 1-8. doi:10.1016/0006-8993(95)01255-9
[22] Z. Binienda and C. S. Kim, “Increase in Levels of Total Free Fatty Acids in Rat Brain Regions Following 3-Ni tropropionic Acid Administration,” Neuroscience Letters, Vol. 230, No. 3, 1997, pp. 199-201. doi:10.1016/S0304-3940(97)00514-4
[23] T. Clausen, A. Zauner, J. E. Levasseur, A. C. Rice and R. Bullock, “Induced Mitochondrial Failure in the Feline Brain: Implications for Understanding Acute Post-Trau matic Metabolic Events,” Brain Research, Vol. 908, No. 1, 2001, pp. 35-48. doi:10.1016/S0006-8993(01)02566-5
[24] C. Fonck and M. Baudry, “Rapid Reduction of ATP Syn thesis and Lack of Free Radical Formation by MPP+ in Rat Brain Synaptosomes and Mitochondria,” Brain Research, Vol. 975, No. 1-2, 2003, pp. 214-221. doi:10.1016/S0006-8993(03)02675-1
[25] Z. Binienda and A. Virmani, “The Mitochondriotropic Effects of L-Carnitine and Its Esters in the Central Nerv ous System,” Current Medical Chemistry—Central Ner vous System Agents, Vol. 3, 2003, pp. 275-282.
[26] T. Kristián, “Metabolic Stages, Mitochondria and Cal cium in Hypoxic/Ischemic Brain Damage,” Cell Calcium, Vol. 36, No. 3-4, 2004, pp. 221-233. doi:10.1016/j.ceca.2004.02.016
[27] H. Kageyama, M. Suga, M. Kashiba, J. Pka, T. Osaka, T. Kashiwa, T. Hirano, K. Nemoto, Y. Namba, D. Ricquier, J.-P. Giacobino and S. Inoue, “Increased Uncoupling Protein-2 and -3 Gene Expression in Skeletal Muscle of STZ-Induced Diabetic Rats,” FEBS Letters, Vol. 440, No. 3, 1998, pp. 450-453. doi:10.1016/S0014-5793(98)01506-3
[28] Z. Binienda, C. Simmons, S. Hussain, W. Slikker Jr. and S. F. Ali, “Effect of Acute Exposure to 3-Nitropropionic Acid on Activities of Endogenous Antioxidants in the Rat Brain,” Neuroscience Letters, Vol. 251, No. 3, 1998, pp. 173-176. doi:10.1016/S0304-3940(98)00539-4
[29] J. A. Murray, M. Panagia, D. Hauton, G. F. Gibbons and K. Clarke, “Plasma Free Fatty Acids and Peroxisome Pro liferator-Activated Receptor α in the Control of Myocar dial Uncoupling Protein Levels,” Diabetes, Vol. 54, No. 12, 2005, pp. 3496-3502. doi:10.2337/diabetes.54.12.3496
[30] L. I. Kelly, P. P. Vicario, G. M. Thompson, M. R. Can delore, T. W. Doebber, J. Ventre, M. S. Wu, R. Meurer, M. J. Forrest, M. W. Conner, M. A. Cascieri and D. E. Moller, “Peroxisome Proliferator-Activated Receptors γ and α Mediate in Vivo Regulation of Uncoupling Protein (UCP1, UCP2, UCP3) Gene Expression,” Endocrinology, Vol. 139, No. 12, 1998, pp. 4920-4927. doi:10.1210/en.139.12.4920
[31] Z. K. Binienda, I. A. Ross, B. Gough, S. F. Ali, S. Z. Imam and C. S. Kim, “Differential Response of Brain and Liver Free Fatty Acids Following Administration of Iron Nanoparticles in Rats,” The Toxicologist, Vol. 132, 2013, p. 505.
[32] A. Hirasawa, T. Hara, S. Katsuma, T. Adachi and G. Tsu jimoto, “Free Fatty Acid Receptors and Drug Discovery,” Biological & Pharmaceutical Bulletin, Vol. 31, No. 10, 2008, pp. 1847-1851.doi:10.1248/
bpb.31.1847
[33] A. Ichimura, A. Hirasawa, T. Hara and G. Tsujimoto, “Free Fatty Acid Receptors Act as Nutrient Sensors to Regulate Energy Homeostasis,” Prostaglandins & Other Lipid Mediators, Vol. 89, No. 3-4, 2009, pp. 82-88. doi:10.1016/j.prostaglandins.2009.05.003
[34] C. J. Nolan, M. S. Madiraju, V. Delghingaro-Augusto, M. L. Peyot and M. Prentki, “Fatty Acid Signaling in the Beta-Cell and Insulin Secretion,” Diabetes, Vol. 55, Suppl. 2, 2006, pp. 16-23. doi:10.2337
/db06-S003
[35] K. Kotarsky, N. E. Nilsson, E. Flodgren, C. Owman and B. Olde, “A Human Cell Surface Receptor Activated by Free Fatty Acids and Thiazolidinedione Drugs,” Biochemical and Biophysical Research Communications, Vol. 301, No. 2, 2003, pp. 406-410. doi:10.1016/S0006-291X(02)03064-4
[36] F. Uno, J. Sasaki, M. Nishizaki, G. Carboni, K. Xu, E. N. Atkinson, M. Kondo, J. D. Minna, J. A. Roth and L. Ji, “Myristoylation of the Fus1 Protein Is Required for Tu mor Suppression in Human Lung Cancer Cells,” Cancer Research, Vol. 64, No. 9, 2004, pp. 2969-2976. doi:10.1158/0008-5472.CAN-03-3702
[37] A. Aitken, P. Cohen, S. Santikarn, D. H. Williams, A. G. Calder, A. Smith and C. B. Klee, “Identification of the NH2-Terminal Blocking Group of Calcineurin B as My ristic Acid,” FEBS Letters, Vol. 150, No. 2, 1982, pp. 314-318.doi:10.1016/0014-5793(82)80759-X
[38] S. A. Carr, K. Biemann, S. Shoji, D. C. Parmalee and K. Titani, “N-Tetradecanoyl is the NH2-Terminal Blocking Group of the Catalytic Submits of Cyclic AMP-Depen dent Protein Kinase from Bovine Cardiac Muscles,” Pro ceedings of the National Academy of Sciences of the Uni ted States of America, Vol. 79, No. 20, 1982, pp. 61286131.doi:10.1073/pnas.79.20.6128
[39] E. N. Olson and G. Spizz, “Fatty Acylation of Cellular Proteins. Temporal and Subcellular Differences between Palmitate and Myristate Acylation,” Journal of Biological Chemistry, Vol. 261, No. 5, 1986, pp. 2458-2466.
[40] E. N. Olson, “Modification of Proteins with Covalent Li pids,” Progress in Lipid Research, Vol. 27, No. 3, 1988, pp. 177-197. doi:10.1016/0163-7827(88)90012-4
[41] A. M. Dizhoor, L. H. Ericsson, R. S. Johnson, S. Kumar, E. Olshevskaya, S. Zozulya, T. A. Neubert, L. Stryer, J. B. Hurley and Walsh, “The NH2 Terminus of Retinal Re covering Is Acylated by a Small Family of Fatty Acids,” Journal of Biological Chemistry, Vol. 267, No. 23, 1992, pp. 16033-16036.
[42] W. Onkenhout, V. Venizelos, P. F. van der Poel, M. P. van den Heuvel and B. J. Poorthuis, “Identification and Quantification of Intermediates of Unsaturated Fatty Acid Metabolism in Plasma of Patients with Fatty Acid Oxida tion Disorders,” Clinical Chemistry, Vol. 41, No. 10, 1995, pp. 1467-1474.
[43] K. Iguchi, N. Okumura, S. Usui, H. Sajiki, K. Hirota and K. Hirano, “Myristoleic acid, a Cytotoxic Component in the Extract from Serenoa Repens, Induces Apoptosis and Necrosis in Human Prostatic LNCaP cells,” Prostate, Vol. 47, No. 1, 2001, pp. 59-65.doi:10.1002/pros.1047
[44] M. D. Resh, “Fatty Acylation of Proteins: New Insights into Membrane Targeting of Myristoylated and Palmi toylated Proteins,” Biochimica et Biophysica Acta, Vol. 1451, No. 1, 1999, pp. 1-16. doi:10.1016/
(S0167-488999)00075-0
[45] S. I. Patterson, “Posttranslational Protein S-Palmitoyla tion and the Compartmentalization of Signaling Mole cules in Neurons,” Biological Research, Vol. 35, 2002, pp. 139-150.doi:10.4067/S0716-97602002000200005
[46] M. Bijlmakers and M. Marsh, “The On-Off Story of Pro tein Palmitoylation,” Trends in Cell Biology, Vol. 13, No. 1, 2003, pp. 32-42. doi:10.1016/S0962-8924(02)00008-9
[47] K. Huang and A. D. El-Husseini, “Modulation of Neuro nal Protein Trafficking and Function by Palmitoylation,” Current Opinion in Neurobiology, Vol. 15, 2005, pp. 527-535. doi:10.1016/
(j.conb.2005.08.001
[48] S. J. Plowman and J. F. Hancock, “Ras Signaling from Plasma Membrane and Endomembrane Microdomains,” Biochimica at Biophysica Acta, Vol. 1746, 2005, pp. 274-283. doi:10.1016/
j.bbamcr.2005.06.004
[49] A. Mor and M. R. Philips, “Compartmentalized Ras/ MAPK Signaling,” Annual Review of Immunology, Vol. 24, 2006, pp. 771-800. doi:10.1146/annurev.immunol.24.021605.090723
[50] L. P. Wright and M. R. Philips, “Thematic Review Series Lipid Posttranslational Modifications. CAAX Modifica tion and Membrane Targeting of Ras,” Journal of Lipid Research, Vol. 47, 2006, pp. 883-891. doi:10.1194/jlr.R600004-JLR200
[51] X. Yang, O. V. Kovalenko, W. Tang, C. Claas, C. S. Stipp and M. E. Hemler, “Palmitoylation Supports As sembly and Function of Integrin-Tetraspanin Complex es,” Journal of Cell Biology, Vol. 167, No. 6, 2004, pp. 1231-1240. doi:10.1083/jcb.200404100
[52] B. Zhou, L. Liu, M. Reddivari and X. A. Zhang, “The Palmitoylation of Metastasis Suppressor KAII/CD82 Is Important for Its Motility and Invasiveness-Inhibitory Ac tivity,” Cancer Research, Vol. 64, No. 20, 2004, pp. 7455-7463.doi:10.1158/0008-5472.CAN-04-1574
[53] K. L. Clark, A. Oelke, M. E. Johnson, K. D. Eilert, P. C. Simpson and S. C. Todd, “CD81 Associates with I4-3-3 in a Redox-Regulated Palmitoylation-Dependent Manner,” Journal of Biological Chemistry, Vol. 279, No. 19, 2004, pp. 19401-19406.doi:10.1074/jbc.M312626200
[54] S. W. Wong, M. J. Kwon, A. M. Choi, H. P. Kim, K. Nakahira and D. H. Hwang, “Fatty Acids Modulate Toll Like Receptor 4 Activation Through Regulation of Re ceptor Dimerization and Recruitment into Lipid Rafts in a Reactive Oxygen Species-Dependent Manner,” Journal of Biological Chemistry, Vol. 284, No. 40, 2009, pp. 27384-27392. doi:10.1074/jbc.M109.044065
[55] E. V. Kalinina and L. D. Fricker, “Palmitoylation of Car boxypeptidase D. Implications for Intracellular Traffick ing,” Journal of Biological Chemistry, Vol. 278, No. 11, 2003, pp. 9244-9249.
doi:10.1074/jbc.M209379200
[56] I. Navarro-Lerida, M. M. Corvi, A. A. Barrientos, F. Ga vilanes, L. G. Berthiaume and I. Rodriguez-Crespo, “Pal mitoylation of Inducible Nitric Oxide Synthase at Cys-3 Is Required for Proper Intracellular Traffic and Nitric Oxide Synthesis,” Journal of Biological Chemistry, Vol. 279, No. 53, 2004, pp. 5682-55689. doi:10.1074/jbc.M406621200
[57] J. M. Draper and C. D. Smith, “Palmitoyl Acyltransferase Assays and Inhibitors,” Molecular Membrane Biology, Vol. 26, No. 1, 2009, pp. 5-13. doi:10.1080/09687680802683839
[58] World Health Organization, “World Health Statistics 2012,” World Health Organization, Geneva, 2012.
[59] M. U. Jakobsen, E. J. O’Reilly, B. L. Heitmann, M. A. Pereira, K. Balter, G. E. Fraser, U. Goldbourt, G. Hall mans, P. Knekt, S. Li, P. Pietinen, D. Spiegelman, J. ste vens, J. Virtamo, W. C. Willett and A. Ascherio, “Major Types of Dietary Fat and Risk of Coronary Heart Disease: A Pooled Analysis of 11 Cohort Studies,” The American Journal of Clinical Nutrition, Vol. 89, No. 5, 2009, pp. 1425-1432.
doi:10.3945/ajcn.2008.27124
[60] D. B. Cines, E. S. Pollak, C. A. Buck, J. Loscalzo, G. A. Zimmerman, R. P. McEver, J. S. Pober, T. M. Wick, B. A. Konkle, B. S. Schwartz, E. S. Barnathan, K. R. McCrae, B. A. Hug, A.-M. Schmidt and D. M. Stern, “Endothelial Cells in Physiology and in the Pathophysiology of Vas cular Disorders,” Blood, Vol. 91, No. 10, 1998, pp. 3527-3561.
[61] J. D. Pearson, “Normal Endothelial Cell Function,” Lupus, Vol. 9, No 3, 2000, pp. 183-188. doi:10.1191/096120300678828299
[62] J. Liu, G. Garcia-Cardena and W. C. Sessa, “Biosynthe sis and Palmitoylation of Endothelial Nitric Oxide Syn thase: Mutagenesis of Palmitoylation Sites, Cysteines-15 and/or -26, Argues Against Depalmitoylation-Induced Translocation of the Enzyme,” Biochemistry, Vol. 34, No. 38, 1995, pp. 12333-12340.
doi:10.1021/bi00038a029
[63] C. Clapp, J. Aranda, C. González, M. C. Jeziorski and G. M. de la Escalera, “Vasoinhibins: Endogenous Regulators of Angiogenesis and Vascular Function,” Trends in Endo crinology & Metabolism, Vol. 17, No. 8, 2006, pp. 301-307.doi:10.1016/j.tem.2006.08.002
[64] Y. Tang and G. Li, “Chronic Exposure to High Fatty Acids Impedes Receptor Agonist-Induced Nitric Oxide Production and Increments of Cytosolic Ca2+ Levels in Endothelial Cells,” Journal of Molecular Endocrinology, Vol. 47, No. 3, 2011, pp. 315-326. doi:10.1530/JME-11-0082
[65] D. Tian, Y. Qiu, Y. Zhan, X. Li, X. Zhi, X. Wang, L. Yin and Y. Ning, “Overexpression of Steroidogenic Acute Regulatory Protein in Rat Aortic Endothelial Cells At tenuates Palmitic Acid-Induced Inflammation and Reduc tion in Nitric Oxide Bioavailability,” Cardiovascular Diabetology, Vol. 11, No. 144, 2012, pp. 1-12.
[66] J. Dyerberg, H. O. Bang, E. Stoffersen, S. Moncada and J. R. Vane, “Eicosapentaenoic Acid and Prevention of Thrombosis and Atherosclerosis?” The Lancet, Vol. 312, No. 8081, 1978, pp. 117-119. doi:10.1016/S0140-6736(78)91505-2
[67] M. Hirafuji, T. Machida, N. Hamaue and M. Minami, “Cardiovascular Protective Effects of n-3 Polyunsaturated Fatty Acids with Special Emphasis on Docosahexaenoic Acid,” Journal of Pharmacological Sciences, Vol. 92, No. 4, 2003, pp. 308-316.doi:10.1254/jphs.92.308
[68] Y. Wu, C. Zhang, Y. Dong, S. Wang, P. Song, B. Viollet and M.-H. Zou, “Activation of the AMP-Activated Pro tein Kinase by Eicosapentaenoic Acid (EPA, 20:5n-3) Improves Endothelial Function in Vivo,” PLoS ONE, Vol. 7, No. 4, 2012, Article ID: e35508. doi:10.1371/journal.pone.0035508
[69] M. T. Nelson, H. Cheng, M. Rubart, L. F. Santana, A. D. Bonev, H. J. Knot and W. J. Lederer, “Relaxation of Arte rial Smooth Muscle by Calcium Sparks,” Science, Vol. 270, No. 5236, 1995, pp. 633-637. doi:10.1126/science.270.5236.633
[70] L.-H. Lai, R.-X. Wang, W.-P. Jiang, X.-J. Yang, J.-P. Song, X.-R. Li and G. Tao, “Effects of Docosahexaenoic Acid on Large-Conductance Ca2+-activated K+ Channels and Voltage-Dependent K+ Channels in Rat Coronary Artery Smooth Muscle Cells,” Acta Pharmacologica Sini ca, Vol. 30, No. 3, 2009, pp. 314-320. doi:10.1038/aps.2009.7
[71] R.-X. Wang, Q. Chai, T. Lu and H.-C. Lee, “Activation of Vascular BK Channels by Docosahexaenoic Acid Is Dependent on Cytochrome P450 Epoxygenase Activity,” Cardiovascular Research, Vol. 90, No. 2, 2011, pp. 344-352. doi:10.1093/cvr/cvq411
[72] H. C. Hercule, B. Salanova, K. Essin, H. Honeck, J. R. Falck, M. Sausbier, P. Ruth, W.-H. Schnuck, F. C. Luft and M. Gollasch, “Vasodilator 17,18-Epoxyeicosatetrae noic Acid Targets the Pore-Forming BK α Channel Sub unit in Rodents,” Experimental Physiology, Vol. 92, No. 6, 2007, pp. 1067-1076. doi:10.1113/expphysiol.2007.038166
[73] R. Ringseis, A. Müller, C. Herter, S. Gahler, H. Steinhart and K. Eder, “CLA Isomers Inhibit TNFα-Induced Eico sanoid Release from Human Vascular Smooth Muscle Cells via a PPARγ Ligand-Like Action,” Biochimica et Biophysica Acta—General Subjects, Vol. 1760, No. 2, 2006, pp. 290-300.
[74] R. Ringseis, S. Gahler, C. Herter and K. Eder, “Conju gated Linoleic Acids Exert Similar Actions on Prostanoid Release from Aortic and Coronary Artery Smooth Muscle Cells,” International Journal for Vitamin and Nutrition Research, Vol. 76, No. 5, 2006, pp. 281-289. doi:10.1024/0300-9831.76.5.281
[75] U. Ikeda, M. Shimpo, Y. Murakami and K. Shimada, “Pe roxisome Proliferator-Activated Receptor-γ Ligands In hibit Nitric Oxide Synthesis in Vascular Smooth Muscle Cells,” Hypertension, Vol. 35, No. 6, 2000, pp. 1232 1236. doi:10.1161/01.HYP.35.6.1232
[76] O. Feron and J.-L. Balligand, “Caveolins and the Re gulation of Endothelial Nitric Oxide Synthase in the Heart,” Cardiovascular Research, Vol. 69, No. 4, 2006, pp. 788-797.doi:10.1016/
j.cardiores.2005.12.014
[77] C. J. Knowles, M. Dionne, M. Cebova and I. M. Pinz, “Palmitate-Induced Translocation of Caveolin-3 and Endothelial Nitric Oxide Synthase in Cardiomyocytes,” On Line Journal of Biological Sciences, Vol. 11, No. 2, 2011, pp. 27-36.doi:10.3844/ojbsci.2011.27.36
[78] V. P. M. van Empel, A. T. A. Bertrand, L. Hofstra, H. J. Crijns, P. A. Doevendans and L. J. De Windt, “Myocyte Apoptosis in Heart Failure,” Cardiovascular Research, Vol. 67, No. 1, 2005, pp. 21-29. doi:10.1016/j.cardiores.2005.04.012
[79] A. Eisenberg-Lerner, S. Bialik, H.-U. Simon and A. Kim chi, “Life and Death Partners: Apoptosis, Autophagy and the Cross-Talk between Them,” Cell Death & Differen tiation, Vol. 16, No. 7, 2009, pp. 966-975. doi:10.1038/cdd.2009.33
[80] C. Leroy, S. Tricot, B. Lacour and A. Grynberg, “Protec tive Effect of Eicosapentaenoic Acid on Palmitate-In duced Apoptosis in Neonatal Cardiomyocytes,” Biochi mica et Biophysica Acta, Vol. 1781, No. 11-12, 2008, pp. 685-693.doi:10.1016/j.bbalip.2008.07.009
[81] S. Ghavami, R. H. Cunnington, B. Yeganeh, J. J. L. Da vies, S. G. Rattan, K. Bathe, M. Kavosh, M. J. Los, D. H. Freed, T. Klonisch, G. N. Pierce, A. J. Halayko and I. M. C. Dixon, “Autophagy Regulates Trans Fatty Acid-Me diated Apoptosis in Primary Cardiac Myofibroblasts,” Biochimica et Biophysica Acta (BBA)—Molecular Cell Research, Vol. 1823, No. 12, 2012, pp. 2274-2286.
[82] S. Cetrullo, B. Tantini, F. Flamigni, C. Pazzini, A. Fac chini, C. Stefanelli, C. M. Caldarera and C. Pignatti, “An tiapoptotic and Antiautophagic Effects of Eicosapen taenoic Acid in Cardiac Myoblasts Exposed to Palmitic Acid,” Nutrients, Vol. 4, No. 2, 2012, pp. 78-90. doi:10.3390/nu4020078

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.