Model-Based Quantification of Load Shift Potentials and Optimized Charging of Electric Vehicles

DOI: 10.4236/sgre.2013.45046   PDF   HTML     4,317 Downloads   6,001 Views   Citations


Managing the charging process of a large number of electric vehicles to decrease the pressure on the local electricity grid is of high interest to the utilities. Using efficient mathematical optimization techniques, the charging behavior of electric vehicles shall be optimally controlled taking into account network, vehicle, and customer requirements. We developed an efficient algorithm for calculating load shift potentials defined as the range of all charging curves meeting the customer’s requirements and respecting all individual charging and discharging constraints over time. In addition, we formulated a mixed integer linear program (MIP) applying semi-continuous variables to find cost-optimal load curves for every vehicle participating in a load shift. This problem can be solved by e.g. branch-and-bound algorithms. Results of two scenarios of Germany in 2015 and 2030 based on mobility studies show that the load shifting potential of EV is significant and contribute to a necessary relaxation of the future grid. The maximum charging and discharging power and the average battery capacity are crucial to the overall load shift potential.

Share and Cite:

T. Hahn, M. Schönfelder, P. Jochem, V. Heuveline and W. Fichtner, "Model-Based Quantification of Load Shift Potentials and Optimized Charging of Electric Vehicles," Smart Grid and Renewable Energy, Vol. 4 No. 5, 2013, pp. 398-408. doi: 10.4236/sgre.2013.45046.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] C. Weiller, “Plug-In Hybrid Electric Vehicle Impacts on Hourly Electricity Demand in the United States,” Energy Policy, Vol. 39, No. 6, 2011, pp. 3766-3778. doi:10.1016/j.enpol.2011.04.005
[2] T. Pollok, C. Matrose, T. Dederichs, A. Schnettler and E. Szczechowicz, “Classification and Comparison of Multi Agent Based Control Strategies for Electric Vehicles in Distribution Networks,” Proceedings of 21st International Conference and Exhibition on Electricity Distribution (CIRED 2011), 6-9 June 2011, Paper No 0974.
[3] K. Clement-Nyns, E. Haesen and J. Driesen, “The Impact of Charging Plug-In Hybrid Electric Vehicles on a Residential Distribution Grid,” IEEE Transactions on Power Systems, Vol. 25, No. 1, 2010, pp. 371-380. doi:10.1109/TPWRS.2009.2036481
[4] N. Hartmann and E. D. Ozdemir, “Impact of Different Utilization Scenarios of Electric Vehicles on the German Grid in 2030,” Journal of Power Sources, Vol. 196, No. 4, 2010, pp. 2311-2318. doi:10.1016/j.jpowsour.2010.09.117
[5] H. Lund and W. Kempton, “Integration of Renewable Energy into the Transport and Electricity Sectors through V2G,” Energy Policy, Vol. 36, No. 9, 2010, pp. 35783587. doi:10.1016/j.enpol.2008.06.007
[6] D. Dallinger, D. Krampe and M. Wietschel, “Vehicleto-Grid Regulation Reserves Based on a Dynamic Simulation of Mobility Behavior,” IEEE Transactions on Smart Grid, Vol. 2, No. 2, 2011, pp. 302-313. doi:10.1109/TSG.2011.2131692
[7] M. Agsten, S. Schlegel and D. Westermann, “On the Optimization of the Load of Electric Vehicles,” Proceedings of the 18th IFAC World Congress, Milano, 28 August-2 September 2011, pp. 13673-13678.
[8] C. Ahn, C. T. Li and H. Peng, “Optimal Decentralized Charging Control Algorithm for Electrified Vehicles Connected to Smart Grid,” Journal of Power Sources, Vol. 196, No. 23, 2011, pp. 10369-10379. doi:10.1016/j.jpowsour.2011.06.093
[9] O. Sundstrom and C. Binding, “Flexible Charging Optimization for Electric Vehicles Considering Distribution Grid Constraints,” IEEE Transactions on Smart Grid, Vol. 3, No. 1, 2012, pp. 26-37. doi:10.1109/TSG.2011.2168431
[10] P. Jochem, T. Kaschub, A. G. Paetz and W. Fichtner, “Integrating Electric Vehicles into the German Electricity Grid—An Interdisciplinary Analysis,” Proceedings of Electric Vehicle Symposium EVS26, Los Angeles, 6-9 May 2012, pp. 1272-1279.
[11] L. Goransson, S. Karlsson and F. Johnsson, “Plug-In Hybrid Electric Vehicles as a Mean to Reduce CO2 Emissions from Electricity Production,” Proceedings to Electric Vehicle Symposium EVS24, Stavanger, 13-16 May 2009, pp. 2614-2624.
[12] S. Inage, “Modelling Load Shifting Using Electric Vehicles in a Smart Grid Environment,” IEA Energy Papers, No. 2010/07, OECD Publishing, Paris, 2010. doi:10.1787/5km7v0bsmw7k-en
[13] M. G. Vaya and G. Andersson, “Locational Marginal Pricing Based Smart Charging of Plug-In Hybrid Vehicle Fleets,” Proceedings of the Smart Energy Strategies Conference, Zurich, 21-23 September 2011.
[14] A. G. Paetz, T. Kaschub, M. Kopp, P. Jochem and W. Fichtner, “Monetare Anreize zur Steuerung der Ladelast von Elektrofahrzeugen—Eine Modellgestützte Optimierung,” Zeitschrift für Energiewirtschaft, Vol. 37, No. 1, 2013, pp. 1-12. doi:10.1007/s12398-012-0095-z
[15] S. Stein, E. Gerding, V. Robu and N. R. Jennings, “A Model-Based Online Mechanism with Pre-Commitment and Its Application to Electric Vehicle Charging,” Proceedings of the International Conference on Autonomous Agents and Multiagent Systems AAMAS12, Valencia, 4-8 June 2012, pp. 669-676.
[16] S. Hutterer, M. Affenzeller and F. Auinger, “Evolutionary Optimization of Multi-Agent Control Strategies for Electric Vehicle Charging,” Proceedings of the 14th International Conference on Genetic and Evolutionary Computation Conference Companion, Philadelphia, 7-11 July 2012, pp. 3-10. doi:10.1145/2330784.2330786
[17] J. Oyarzabal, J. Jimeno, J. Ruela, A. Engler and C. Hardt, “Agent Based Micro Grid Management System,” Proceedings of the International Conference on Future Power Systems, Amsterdam, 18 November 2005, pp. 1-6.
[18] A.-G. Paetz, B. Becker, W. Fichtner and H. Schmeck, “Shifting Electricity Demand with Smart Home Technologies—An Experimental Study on User Acceptance,” 30th USAEE/IAEE North American Conference Online Proceedings, Washington DC, 9-12 October 2011.
[19] R. Horst and H. Tuy, “Global Optimization: Deterministic Approaches,” Springer, Berlin Heidelberg, 2003.
[20] J. M. Zamora and I. E. Grossmann, “A Branch and Contract Algorithm for Problems with Concave Univariate, Bilinear and Linear Fractional Terms,” Journal of Global Optimization, Vol. 14, No. 3, 1999, pp. 217-249. doi:10.1023/A:1008312714792
[21] A. H. Land and A. G. Doig, “An Automatic Method of Solving Discrete Programming Problems,” Econometrica, Vol. 28, No. 3, 1960, pp. 497-520. doi:10.2307/1910129
[22] M. Berkelaar, K. Eikland and P. Notebaert, “lp_solve—A Mixed Integer Linear Programming (MILP) Solver,” Version, 2011.
[23] D. Vollmer, P. Horstmann and M. Kneifel, “Elektrische Standklimatisierung in Hybridfahrzeugen,” 2011. Bosch. pdf
[24] National Electric Mobility Platform (Nationale Plattform Elektromobilitat), “Zweiter Bericht der Nationalen Plattform Elektromobilitat,” Gemeinsame Geschaftsstelle Elektromobilitat der Bundesregierung, Berlin, 2011.
[25] Infas and DLR, “Mobilitat in Deutschland 2008,” Institute for Applied Social Sciences GmbH (Infas), German Aerospace Center (DLR), on Behalf of the Federal Ministry of Transport, Building and Urban Development (BMVBS), 2010.
[26] P. Jochem, T. Kaschub and W. Fichtner, “How to Integrate Electric Vehicles in the Future Energy System?” In: M. Hülsmann and D. Fornahl, Eds., Evolutionary Paths towards the Mobility Patterns of the Future, Springer, Heidelberg, 2012.
[27] H. Heinrichs, A. EBer-Frey, P. Jochem and W. Fichtner, “Zur Analyse der Langfristigen Entwicklung des Deutschen Kraftwerkparks—Zwischen Europaischem Energieverbund und dezentraler Erzeugung,” In: VDI-GET, Ed., Optimierung in der Energiewirtschaft, VDI Verlag, Düsseldorf, 2011, pp. 19-30.
[28] M. Schoenfelder, A. EBer-Frey, M. Schick, W. Fichtner, V. Heuveline and T. Leibfried, “New Developments in Modeling Network Constraints in Techno-economic Energy System Expansion Planning Models,” Zeitschrift für Energiewirtschaft, Vol. 36, No. 1, 2012, pp. 27-35. doi:10.1007/s12398-011-0067-8

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.