Input power-mechanism relationship for ultrasonic Irradiation: Food and polymer applications

DOI: 10.4236/ns.2013.58A2003   PDF   HTML     5,132 Downloads   7,122 Views   Citations


Mechanisms for interactions between ultrasound waves and materials vary as a function of input power of ultrasound. The objectives of this study were to compare mode of actions for ultrasound waves at different input powers. This study also describes various effects of ultrasound on materials at different input powers with emphasize on food and polymer applications. At low power of ultrasound, the major mechanism is acoustic streaming and at a power above threshold value, the most possible one is acoustic cavitation. Low power of ultrasound is a powerful analytical technique to investigate on physico-chemical properties of both biological and non-biological materials. While at sufficiently high power, it generates shear forces that are able to create different effects. For each pair of medium-acoustic wave, two types of mechanisms, acoustic streaming and cavitation may be occurred simultaneously.

Share and Cite:

Kasaai, M. (2013) Input power-mechanism relationship for ultrasonic Irradiation: Food and polymer applications. Natural Science, 5, 14-22. doi: 10.4236/ns.2013.58A2003.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Lorimer, J.P. and Mason, T. J. (1987) Sonochemistry: Part 1: The physical aspects. Chemical Society Review, 16, 239-274. doi:10.1039/cs9871600239
[2] O’Brien, W.D. (2007) Ultrasound-biophysics mechanisms. Progress in Biophysics and Molecular Biological, 93, 212-255. doi:10.1016/j.pbiomolbio.2006.07.010
[3] Bremner, D. (1990) Historical introduction to ultrasound. In: Mason, T.J., Ed., Advances in Sono-Chemistry, JAI Press LTD., London, Vol. 1, 1-37.
[4] McClement, D.J. and Povey, M.J.W. (1992) Ultrasonic analysis of edible fats and oils. Ultrasonics, 30, 383-388. doi:10.1016/0041-624X(92)90094-3
[5] Kuttruff, H. (1991) Ultrasonics: Fundamentals and appli cations. Elsevier Applied Science, London, 363-394.
[6] Crawford, A.F. (1955) Ultrasonic engineering with par ticular references to high power applications. Butterworths Scientific, London, 202-215.
[7] Shoh, A. (1983) Ultrasonics. In: Kirk-Othmer, Encyclo pedia of Chemical Technology, Vol. 24, New York, Wiley, 462-479.
[8] Mason, T.J. (1990) Sonochemistry: The uses of ultra sound in chemistry. The Royal Society of Chemistry, Cambridge.
[9] Berlan, J. and Mason, T.J. (1992) Sonochemistry: From research laboratories to industrial plants. Ultrasonics, 30, 203-212. doi:10.1016/0041-624X(92)90078-Z
[10] Ratoarinoro, N., Wilhelm, A.M., Berlan, J. and Delmas, H. (1992) Effects of ultrasound emitter type and power on a heterogeneous reaction. The Chemical Engineering Journal, 50, 27-31. doi:10.1016/0300-9467(92)80003-S
[11] Tsaih, M.-L., Tseng, L.Z. and Chen, R.H. (2004) Effects of removing small fragments with ultrafiltration treatment and ultrasonic conditions on the degradation kinetics of chitosan. Polymer Degradation and Stability, 86, 25-32. doi:10.1016/j.polymdegradstab.2003.10.015
[12] Muthukumaran, S., Kentish, S.E., Stevens, G.W. and Ashokkumar, M. (2006) Application of ultrasound in mem brane separation processes: A review. Reviews in Chemi cal Engineering, 22, 155-194. doi:10.1515/REVCE.2006.22.3.155
[13] Patist, A. and Bates, D. (2008) Ultrasonic innovations in the food industry: From the laboratory to commercial production. Innovative Food Science and Emerging Tech nologies, 9, 147-154. doi:10.1016/j.ifset.2007.07.004
[14] Baxter, S., Zivanovic, S. and Weiss, J. (2005) Molecular weight and degree of acetylation of high-intensity ultra sonicated chitosan. Food Hydroclloids, 19, 821-830. doi:10.1016/j.foodhyd.2004.11.002
[15] Leighton, T.G. (1995) Bubble population phenomena in acoustic cavitation. Ultrasonics Sonochemistry, 2, S123 S136. doi:10.1016/1350-4177(95)00021-W
[16] Mason, T.J. (1998) Power ultrasound in food processing The way forward. In: Povey, M.J.W. and Mason, T.J., Eds., Ultrasound in Food Processing, Blackie Academic & Professional, London, 103-126.
[17] Lindley, J. and Mason, T.J. (1987) Sonochemistry: Part 2: synthetic applications. Chemical Society Review, 16, 275-311. doi:10.1039/cs9871600275
[18] Henglein, V.A. (1954) Die auslosung und der verlauf der polymerisation des acrylamids unter dem einflub von ul traschallwellen. Die Makromolekulare Chemie, 14, 15-39. doi:10.1002/macp.1954.
[19] Henglein. V.A. (1955) Die reaktion des α, α-diphenyl-β pikryl-hydrazyls mit langkettigen freien radikalen, die beim ultraschallabbau von polymethacrylsauremethyles ter gebildet werden. Die Makromolekulare Chemie, 15, 188-210. doi:10.1002/macp.1955.020150115
[20] Price, G. (1990) The use of ultrasound for the controlled degradation of polymer solutions. In: Mason, T.J., Ed., Advances in Sonochemistry, JAI Press, London, 231-287.
[21] von Sonntag, C., Mark, G., Tauber, A. and Schuchmann, H.-P. (1999) OH radical formation and dosimetry in the sonolysis of aqueous solutions. Advances in Sonochemistry, 5, 109-145. doi:10.1016/S1569-2868(99)80004-7
[22] Lawal, O.S. (2009) Starch hydroxyalkylation: Physico chemical properties and enzymatic digestibility of native and hydroxypropylated finger millet (Eleusine coracana) starch. Food Hydrocolloids, 23, 415-425. doi:10.1016/j.foodhyd.2008.02.013
[23] Lorimer, J.P. (1990) Ultrasound in polymer chemistry. In: Mason, T.J., Ed., Sonochemistry: The use of ultrasound in chemistry, The Royal Society of Chemistry, Cambridge, 9-26,112-131.
[24] Price, G.J. (1994) Ultrasonically enhanced polymerization reactions. Trends in Polymer Science, 2, 174-177.
[25] Basedow, A.M. and Ebert, K.H. (1977) Ultrasonic degra dation of polymers in solution. In: Advances Polymer Science, Springer-Verlag, New York, 22,88-148.
[26] Sohma, J. (1979) Electron spin resonance studies of the mechanical degradation of polymers. In: Grassie, N., Ed., Developments in Polymer Degradation, Elsevier, London, 99-127.
[27] Price, G.J. and Lenz, E.J. (1993) The use of dosimeters to measure radical production in aqueous sonochemical systems. Ultrasonics, 31, 451-456. doi:10.1016/0041-624X(93)90055-5
[28] Kanwal, F., Liggat, J.J. and Pethrick, R.A. (2000) Ultra sonic degradtion of polystyrene solutions. Polymer Degradation and Stability, 68, 445-449. doi:10.1016/S0141-3910(00)00034-3
[29] Tayal, A. and Khan, S.A. (2000) Degradation of a water soluble polymer: Molecular weight changes and chain scission characteristics. Macromolecules, 33, 9488-9493. doi:10.1021/ma000736g
[30] Zhou, C. and Ma, H. (2006) Ultrasonic degradation of polysaccharide from a red algae (Porphyra yezoensis). Journal of Agricultural and Food Chemistry, 54, 2223-2228. doi:10.1021/jf052763h
[31] Czechowska-Biskup, R., Rokita, B., Lotfy, S., Ulanski, P. and Rosiak, J.M. (2005) Degradation of chitosan and starch by 360-kHz ultrasound. Carbohydrate Polymers, 60, 175-184. doi:10.1016/j.carbpol.
[32] Suslick, K. and Doktycz, S. (1990) Sounding out new chemistry. New Scientist, 3, 50-53.
[33] Suslick, K.S. (1988) Ultrasound, its chemical, physical and biological effects. VCH, Berlin.
[34] Suslick, K.S., Dokytyez, S. J. and Flint, E.B. (1990) On the origin of sonoluminescence and sonochemistry. Ultrasonics, 5, 280-290. doi:10.1016/0041-624X(90)90033-K
[35] Mason, T.J. (1990) Advances in Sonochemistry. Vol. 1, JAI Press, London, 231-287.
[36] Fisher, C.H., Hart, E.J. and Henglein, A. (1986) Ultrasonic irradiation of water. Journal of Phyical Chemistry, 90, 1954-1956.
[37] Henglein, A. and Kormann, C. (1985) Scavenging of OH radicals produced in the sonolysis of water. International Journal of Radiation in Biology, 48, 251-258. doi:10.1080/09553008514551241
[38] Lorimer, J.P. and Mason, T.J. (1995) Some recent studies at Coventry university, sonochemistry centre. Ultrasonics Sonochemistry, 2, S79-S86. doi:10.1016/1350-4177(95)00026-3
[39] Manousaki, E., Psillakis, E., Kalogerakis, N. and Mant zavinos, D. (2004) Degradation of sodium dodecylbenzene sulfonate in water by ultrasonic irradiation. Water Research, 38, 3751-3759. doi:10.1016/j.watres.2004.06.002
[40] Astrid, R., Michael, T. and Georg, G. (2004) Application of power ultrasound for azo degradation. Ultrasonics Sonochemistry, 11, 177-182. doi:10.1016/j.ultsonch.2004.01.030
[41] Portenlanger, G. and Heusinger, H. (1997) The influence of frequency on the mechanical and radical effects for the ultrasonic degradation of dextranes. Ultrasonics Sono chemistry, 4, 127-130. doi:10.1016/S1350-4177(97)00018-7
[42] Trzcinski, S., Danuta U. and Staszewska, D.U. (2004) Kinetics of ultrasonic degradation and polymerisation de gree distribution of sonochemically degraded chitosans. Carbohydrate Polymers, 56, 489-498. doi:10.1016/j.carbpol.2004.03.017
[43] Wasikiewicz, J.M., Yoshii, F., Nagasawa, N., Wach, R.A. and Mitomo, H. (2005) Degradation of chitosan and so dium alginate by gamma radiation, sonochemical and ul traviolet methods. Radiation Physics and Chemistry, 73, 287-295. doi:10.1016/j.radphyschem.2004.09.021
[44] Price, G.J., Smith, P.F. and West, P.J. (1991) Ultraonically initiated polymerization of methyl methacrylate. Ultra sonics, 29, 166-170. doi:10.1016/0041-624X(91)90047-C
[45] Chen, R.H., Chang, J.R. and Shyr, J.S. (1997) Effect of ultrasonic conditions and storage in acidic solutions on changes in molecular weight and polydispersity of treated chitosan. Carbohydrate Research, 299, 287-294. doi:10.1016/S0008-6215(97)00019-0
[46] Seguchi, M., Higasa, T. and Mori, T. (1994) Study of wheat starch structures by sonication treatment. Cereal Chemistry, 71, 636-639.
[47] Isono, Y., Kumagai, T. and Watanabe, T. (1994) Ultra sonic degradation of waxy rice starch. Bioscience Bio technolgy and Biochemistry, 58, 1799-1802. doi:10.1271/bbb.58.1799
[48] Kasaai, M.R., Arul, J. and Charlet, G. (2008) Fragmenta tion of chitosan by ultrasonic irradiation. Ultrasonics Sonochemistry, 15, 1000-1008. doi:10.1016/j.ultsonch.2008.04.005
[49] Malhotra, S.L. (1982) Ultrasonic degradation of hydroxy propyl cellulose solutions in water, ethanol, and tetrahy drofuran. Journal of Macromolecule Science-Chemistry, A17, 601-636. doi:10.1080/0022233820
[50] Szorek, R. (1979) Ultrasonic degradation of polycapro amide in 40% sulfuric acid solution. Journal of Polymer Science, Polymer Physics, 17, 939-944. doi:10.1002/pol.1979.180170603
[51] Kruus, P., Lawrie, J.A.G. and O’Neill, M.L. (1988) Po lymerization and depolymerization by Ultrasound. Ultra sonics, 26, 352-356. doi:10.1016/0041-624X(88)90035-2
[52] Keqiang, C., Ye, S., Huilin, L. and Xi, X.U. (1985) Studies on ultraonic degradation and block copolymerization of hydroxyethyl cellulose and poly (ethylene oxide). Journal of Macromolecule Science-Chemistry, A22, 455 469.
[53] Sesshadri, R., Weiss, J., Hulbert, G.J. and Mount, J. (2003) Ultrasonic processing influences rheological and optical properties of high methoxyl pectin dispersions. Food Hy drocolloids, 17, 191-197. doi:10.1016/S0268-005X(02)00051-6
[54] Kawabata, K. and Umemura, S. (1993) Highly efficient sonochemical reaction with a switched spiral focal field. Ultrasonics, 31, 457-462. doi:10.1016/0041-624X(93)90056-6
[55] Kusters, K.A., Pratsinis, S., Thoma, S.G. and Smith, D.M. (1993) Ultrsonic fragmentation of agglomerate powders. Chemical Engineering Science, 48, 4119-4127. doi:10.1016/0009-2509(93)80258-R
[56] Ciftcioglu, M., Akinc, M. and Burkhart, L. (1986) Meas urement of agglomerate strength distributions in agglom erated powders. Ceramic Bulletin, 65, 1591-1596.
[57] Friedman, V.M. (1972) The interaction mechanism be tween cavitation bubbles and particles of the solid and liquid phases. Ultrasonics, 19, 162-172. doi:10.1016/0041-624X(72)90357-5
[58] Nyborg, W.L. (1991) Biological effects of sound and ultrasound. In: Trigg, G.L., Ed., Encyclopedia of Applied Physics, Vol. 2, VCH, Berlin, 403-421.
[59] Qian, Z., Stoodely, P. and Pitt, W.G. (1996) Effect of low intensity ultrasound upon biofilm structure from confocal scanning laser microscopy observation. Biomaterials, 17, 1975-1980. doi:10.1016/0142-9612(96)00022-1
[60] Mason, T.J. (1986) Use of ultrasound in chemical synthe sis. Ultrasonics, 24, 245-253. doi:10.1016/0041-624X(86)90101-0
[61] Ley, S.V. and Low, C.M.R. (1989) Ultrasound in synthesis. Springer-Verlag, Berlin. doi:10.1007/978-3-642-74672-7
[62] Li, Y., Li, J., Guo, S. and Li, H. (2005) Mechanochemical degradation kinetics of high-density polyethylene melt and its mechanism in the presence of ultrasonic irradia tion. Ultrasonics Sonochemistry, 12, 183-189. doi:10.1016/j.ultsonch.2003.10.011
[63] Mason, T.J. (1992) Industrial sonochemistry: Potential and practicality. Ultrasonics, 30, 192-196. doi:10.1016/0041-624X(92)90072-T
[64] Mason, T.J. (1997) Ultrasound in synthetic organic chemistry. Chemical Society Reviews, 26, 443-451. doi:10.1039/cs9972600443
[65] Price, G.J., White, A.J. and Clifton, A.A. (1995) The effect of high intensity ultrasound on solid polymers. Polymer, 26, 4919-4925. doi:10.1016/0032-3861(96)81616-8
[66] Roberts, R.T. (1993) High intensity ultrasonics in food processing. Chemistry and Industry, 15, 119-121.
[67] Cains, P.W., Martin, P.D. and Price, C.J. (1998) The use of ultrasound in industrial chemical synthesis and crystallization. 1. Applications to synthetic chemistry. Organic Process Research and Development, 1, 234-248.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.