Share This Article:

Comparative Proteomic Analysis of Helicobacter pylori Strains Isolated from Chinese Patients

Abstract Full-Text HTML Download Download as PDF (Size:3387KB) PP. 6-12
DOI: 10.4236/pp.2013.45A002    2,739 Downloads   4,494 Views   Citations

ABSTRACT

Helicobacter pylori, the major cause of gastritis, peptic ulcer and gastric cancer, infects half of the world population, but only a few infections lead to serious disease. In order to investigate specific proteins related to the pathogenic difference of this bacterium, comparative proteome analyses of Helicobacter pylori C1 (isolated from patients with gastric cancer) and G1 (isolated from patients with gastritis) were performed using two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS). Four proteins (inorganic pyrophosphatase, 3-oxoadipate CoA-transferase subunit B, translation elongation factor, and aldo-keto reductase) were found only in Helicobacter pylori C1, and one protein (alkyl hydroperoxide reductase) was found in G1. Additionally, different isoelectric points (pI) of Hsp60 were observed from the two strains. Then we cloned and sequenced Hsp60 genes from forty-nine Helicobacter pylori isolated from gastric cancer and gastritis. Gene sequencing showed that one C→G single nucleotide polymorphism occurred in the 1399th nucleotide of Hsp60. These results indicate that pathogenic differences exist in various Helicobacter pylori isolated from Chinese patients.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

B. Li, W. Sun, L. He, H. Jiang, Z. Zhang, D. Du and J. Zhang, "Comparative Proteomic Analysis of Helicobacter pylori Strains Isolated from Chinese Patients," Pharmacology & Pharmacy, Vol. 4 No. 5A, 2013, pp. 6-12. doi: 10.4236/pp.2013.45A002.

References

[1] R. M. Peek Jr. and M. J. Blaser, “Helicobacter pylori and Gastrointestinal Tract Adenocarcinomas,” Nature Reviews Cancer, Vol. 2, No. 1, 2002, pp. 28-37. doi:10.1038/nrc703
[2] P. C. Konturek, S. J. Konturek and T. Brzozowski, “Helicobacter pylori Infection in Gastric Cancerogenesis,” Journal of Physiology and Pharmacology, Vol. 60, No. 3, 2009, pp. 3-21.
[3] N. Salama, K. Guillemin, T. K. McDaniel, G. Sherlock, L. Tompkins and S. Falkow, “A Whole-Genome Microarray Reveals Genetic Diversity among Helicobacter pylori Strains,” Proceedings of the National Academy of Sciences of USA, Vol. 97, No. 26, 2000, pp. 14668-14673.
[4] D. A. Israel, N. Salama, C. N. Arnold, S. F. Moss, T. Ando, H. P. Wirth, et al., “Helicobacter pylori Strain-Specific Differences in Genetic Content Identified by Microarray Influence Host Inflammatory Responses,” Journal of Clinical Investigation, Vol. 107, No. 5, 2001, pp. 611-620.
[5] S. A. Con, H. Takeuchi, A. L. Valerín, R. Con-Wong, G. R. Con-Chin, V. G. Con-Chin, et al., “Diversity of Helicobacter pylori CagA and VacA Genes in Costa Rica: Its Relationship with Atrophic Gastritis and Gastric Cancer,” Helicobacter, Vol. 12, No. 5, 2007, pp. 547-552. doi:10.1111/j.1523-5378.2007.00534.x
[6] R. Patra, S. Chattopadhyay, R. De, P. Ghosh, M. Ganguly, A. Chowdhury, et al., “Multiple Infection and Microdiversity among Helicobacter pylori Isolates in a Single Host in India,” PLoS One, Vol. 7, No. 8, 2012, e43370. doi:10.1371/journal.pone.0043370
[7] J. F. Tomb, O. White, A. R. Kerlavage, R. A. Clayton, G. G. Sutton and R. D. Fleischmann, “The Complete Genome Sequence of the Gastric Pathogen Helicobacter Pylori,” Nature, Vol. 388, No. 6642, 1997, pp. 539-547. doi:10.1038/41483
[8] R. A. Alm, L. S. Ling, D. T. Moir, B. L. King, E. D. Brown, P. C. Doig, et al., “Genomic-Sequence Comparison of Two Unrelated Isolates of the Human Gastric Pathogen Helicobacter pylori,” Nature, Vol. 397, No. 6715, 1999, pp. 176-180. doi:10.1038/16495
[9] J. M. Thiberge, C. Boursaux-Eude, P. Lehours, M. A. Dillies, S. Creno and J. Y. Coppée, “From Array-Based Hybridization of Helicobacter pylori Isolates to the Complete Genome Sequence of an Isolate Associated with MALT Lymphoma,” BMC Genomics, Vol. 11, 2010, p. 368.
[10] Y. You, L. He, M. Zhang, J. Fu, Y. Gu, B. Zhang, X. Tao and J. Zhang, “Comparative Genomics of Helicobacter pylori Strains of China Associated with Different Clinical Outcome,” PLoS One, Vol. 7, No. 6, 2012, e38528. doi:10.1371/journal.pone.0038528
[11] P. R. Jungblut, D. Bumann, G. Haas, U. Zimny-Arndt, P. Holland, S. Lamer, et al., “Comparative Proteome Analysis of Helicobacter pylori,” Molecular Microbiology, Vol. 36, No. 3, 2000, pp. 10-725.
[12] D. R. Pereira, D. Martins, F. V. Winck, M. B. Smolka, N. F. Nishimura, E. M. Rabelo-Goncalves, et al., “Comparative Analysis of Two-dimensional Electrophoresis Maps (2-DE) of Helicobacter Pylori from Brazilian Patients with Chronic Gastritis and Duodenal Ulcer: A Preliminary Report,” Revista do Instituto de Medicina Tropical de Sao Paulo, Vol. 48, No. 3, 2006, pp. 175-177. doi:10.1590/S0036-46652006000300011
[13] L. F. Steel, T. S. Mattu, A. Mehta, H. Hebestreit, R. Dwek, A. A. Evans, et al., “A Proteomic Approach for the Discovery of Early Detection Markers of Hepatocellular Carcinoma,” Disease Markers, Vol. 17, No. 3, 2001, pp. 179-189. doi:10.1155/2001/963023
[14] H. Enroth, T. Akerlund, A. Sillén and L. Engstrand, “Clustering of Clinical Strains of Helicobacter pylori Analyzed by Two-dimensional Gel Electrophoresis,” Clinical and Diagnostic Laboratory Immunology, Vol. 7, No. 2, 2000, pp. 301-306.
[15] J. W. Park, J. Y. Song, S. G. Lee, J. S. Jun, J. U. Park and M. J. Chung, “Quantitative Analysis of Representative Proteome Components and Clustering of Helicobacter pylori Clinical Strains,” Helicobacter, Vol. 11, No. 6, 2006, pp. 533-543. doi:10.1111/j.1523-5378.2006.00456.x
[16] Y. N. Zhang, S. G. Ding, L. H. Huang, J. Zhang, Y. Y. Shi and L. J. Zhong, “Comparative Proteome Analysis of Helicobacter pylori Clinical Strains by Two-dimensional Gel Electrophoresis,” Journal of Zhejiang University Science B, Vol. 12, No. 10, 2011, pp. 820-827. doi:10.1631/jzus.B1000445
[17] V. M. Govorun, S. A. Moshkovskii, O. V. Tikhonova, E. I. Goufman, M. V. Serebryakova and K. T. Momynaliev, “Comparative Analysis of Proteome Maps of Helicobacter pylori Clinical Isolates,” Biochemistry (Mosc), Vol. 68, No. 1, 2003, pp. 42-49. doi:10.1023/A:1022189200944
[18] A. Krah, F. Schmidt, D. Becher, M. Schmid, D. Albrecht, A. Rack, K. Büttner and P. R. Jungblut, “Analysis of Automatically Generated Peptide Mass Fingerprints of Cellular Proteins and Antigens from Helicobacter pylori 26695 Separated by Two-dimensional Electrophoresis,” Molecular & Cellular Proteomics, Vol. 2, No. 12, 2003, pp. 1271-1283. doi:10.1074/mcp.M300077-MCP200
[19] R. Takenaka, K. Yokota, K. Ayada, M. Mizuno, Y. Zhao, Y. Fujinami, et al., “Helicobacter pylori Heat-Shock Protein 60 Induces Inflammatory Responses through the Toll-Like Receptor-Triggered Pathway in Cultured Human Gastric Epithelial Cells,” Microbiology, Vol. 150, No. 12, 2004, pp. 3913-3922. doi:10.1074/mcp.M300077-MCP200
[20] A. P. Gobert, J. C. Bambou, C. Werts, V. Balloy, M. Chignard, A. P. Moran and R. L. Ferrero, “Helicobacter pylori Heat Shock Protein 60 Mediates Interleukin-6 Production by Macrophages via a Toll-like Receptor (TLR)-2-,TLR-4-, and Myeloid Differentiation Factor 88-Independent Mechanism,” Journal of Biological Chemistry, Vol. 279, No. 1, 2004, pp. 245-250. doi:10.1074/jbc.M307858200
[21] Y. Zhao, K. Yokota, K. Ayada, Y. Yamamoto, T. Okada, L. Shen and K. Oguma, “Helicobacter pylori Heat-Shock Protein 60 Induces Interleukin-8 via a Toll-Like Receptor (TLR) 2 and Mitogen-Activated Protein (MAP) Kinase Pathway in Human Monocytes,” Journal of Medical Microbiology, Vol. 56, No. 2, 2007, pp. 154-164. doi:10.1099/jmm.0.46882-0
[22] K. W. Liao, C. S. Lin, W. L. Chen, C. T. Yang, C. M. Lin and W. T. Hsu, “Antibodies against Helicobacter pylori Heat Shock Protein 60 Aggravate HSP60-Mediated Proinflammatory Responses,” Cytokine, Vol. 55, No. 2, 2011, pp. 174-180. doi:10.1016/j.cyto.2011.04.011
[23] S. H. Goh, R. R. Facklam, M. Chang, J. E. Hill, G. J. Tyrrell and E. C. Burns, “Identification of Enterococcus Species and Phenotypically Similar Lactococcus and Vagococcus Species by Reverse Checkerboard Hybridization to Chaperonin 60 Gene Sequences,” Journal of Clinical Microbiology, Vol. 38, No. 11, 2000, pp. 3953-3959.
[24] L. J. Teng, P. R. Hsueh, Y. H. Wang, H. M. Lin, K. T. Luh and S. W. Ho, “Determination of Enterococcus faecalis GroESL Full-Length Sequence and Application for Species Identification,” Journal of Clinical Microbiology, Vol. 39, No. 9, 2001, pp. 3326-3331. doi:org/10.1128/JCM.39.9.3326-3331.2001
[25] A. Y. Kwok and A. W. Chow, “Chow Phylogenetic Study of Staphylococcus and Macrococcus Species Based on Partial Hsp60 Gene Sequences,” International Journal of Systematic and Evolutionary Microbiology, Vol. 53, 2003, pp. 87-92. doi:10.1099/ijs.0.02210-0
[26] L. Zhu, W. Li and X. Dong, “Species Identification of Genus Bifidobacterium Based on Partial HSP60 Gene Sequences and Proposal of Bifidobacterium thermacidophilum Subsp. Porcinum Ubsp. Nov,” International Journal of Systematic and Evolutionary Microbiology, Vol. 53, 2003, pp. 1619-1623. doi:10.1099/ijs.0.02617-0

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.