PPAR and Local Renin-Angiotensin Systems in Cardiovascular and Metabolic Diseases Associated with Obesity: A Unifying Hypothesis


Recent research has revealed roles for the PPAR family of transcription factors in the modulation of the RAAS. In particular, PPARα and PPARγ have been shown to control the transcription of renin in several tissues and influence the activity of local renin-angiotensin-systems coupling vascular and metabolic functions and contributing to their modulation. In this conceptual framework, PPAR and local RAS participate in the pathophysiology of blood pressure elevation, as well as in organ and tissue damage, and disturbances of glucose and lipid metabolism associated with cardiovascular diseases and obesity. The understanding of these mechanisms here discussed and their adequate pharmacological manipulation enlarge the potential to intervene pathological processes that connect the obesity with associate diseases and could alert about the adverse effects of some PPAR agonists on involved organs.

Share and Cite:

G. Márquez-Salom and J. Diez, "PPAR and Local Renin-Angiotensin Systems in Cardiovascular and Metabolic Diseases Associated with Obesity: A Unifying Hypothesis," Open Journal of Endocrine and Metabolic Diseases, Vol. 3 No. 5A, 2013, pp. 1-10. doi: 10.4236/ojemd.2013.35A001.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] S. Engeli, P. Chling, K. Gorzelniak, et al., “The Adipose-Tissue Renin-Angiotensin-Aldosterone System: Role in the Metabolic Syndrome?” The International Journal of Biochemistry & Cell Biology, Vol. 35, No. 6, 2003, pp. 807-825. doi:10.1016/S1357-2725(02)00311-4
[2] F. Massiera, M. Bloch-Faure, D. Ceiler, et al., “Adipose Angiotensinogen Is Involved in Adipose Tissue Growth and Blood Pressure Regulation,” The FASEB Journal, Vol. 15, No. 14, 2001, pp. 2727-2729.
[3] L. Yvan-Charvet and A. Quignard-Boulange, “Role of Adipose Tissue Rennin-Angiotensin System in Metabolic and Inflammatory Diseases Associated with Obesity,” Kidney International, Vol. 79, No. 2, 2011, pp. 162-168. doi:10.1038/ki.2010.391
[4] T. C. Leone, et al., “A Critical Role for the Peroxisome Proliferator Activated Receptor α (PPARα) in the Cellular Fasting Response: The PPARa-Null as a Model of Fatty Oxidation Disorders,” Proceedings of the National Academy of Sciences of USA, Vol. 96, No. 13, 1999, pp. 7473-7478. doi:10.1073/pnas.96.13.7473
[5] S. Kersten, et al., “Peroxisome Proliferator Activated Receptor α Mediates the Adaptive Response to Fasting,” Journal of Clinical Investigation, Vol. 103, No. 11, 1999, pp. 1489-1498. doi:10.1172/JCI6223
[6] K. Tordjman, et al., “Absence of Peroxisome Proliferator-Activated Receptor-α Abolishes Hypertension and Attenuates Atherosclerosis in the Tsukuba Hypertensive Mouse,” Hypertension, Vol. 50, No. 5, 2007, pp. 945-951. doi:10.1161/HYPERTENSIONAHA.107.094268
[7] Ch. Yagil and Y. Yagil, “Peroxisome Proliferator-Activate Receptor-α Friend or Foe?” Hypertension, Vol. 50, No. 5, 2007, pp. 847-850. doi:10.1161/HYPERTENSIONAHA.107.100461
[8] Y. Shimamoto, K. Hirota and A. Fukamizu, “Effect of Peroxisome Proliferator-Activated Receptor Alpha on Human Angiotensinogen Promoter,” International Journal of Molecular Medicine, Vol. 13, No. 5, 2004, pp. 729733.
[9] H. Yu and R. Di Nicolantonio, “Altered Nuclear Protein Binding to the First Intron of the Renin Gene of the Spontaneously Hypertensive Rat,” Clinical and Experimental Hypertension, Vol. 20, No. 8, 1998, pp. 817-832. doi:10.3109/10641969809053249
[10] C. Karlsson, K. Lindell, et al., “Human Adipose Tissue Expresses Angiotensinogen and Enzymes Required for Its Conversion to Angiotensina II,” Journal of Endocrinology and Metabolism, Vol. 83, No. 11, 1998, pp. 39253929. doi:10.1210/jc.83.11.3925
[11] A. Harte, et al., “Insulin-Mediated Upregulation of the Renin Angiotensin System in Human Subcutaneous Adipocytes Is Reduced by Rosiglitazone,” Circulation, Vol. 111, No. 15, 2005, pp. 1954-1961. doi:10.1161/01.CIR.0000161954.17870.5D
[12] F. J. Morales Olivas and L. Estan Yago, “Conceptos Nuevos Sobre el Sistema Renina Angiotensina,” Hipertensión y Riesgo Vascular, Vol. 27, No. 5, 2010, pp. 211-217.
[13] V. T. Todorov, M. Desch, et al., “Peroxisome Proliferator-Activated Receptor γ Is Involved in the Control of Renin Gene Expression,” Hypertension, Vol. 50, No. 5, 2007, pp. 939-944. doi:10.1161/HYPERTENSIONAHA.107.092817
[14] V. Todorov, M. Muller, F. Schweda and A. Kurtz, “Tumor Necrosis Factor-Alpha Inhibits Renin Gene Expression,” American Journal of Physiology—Regulatory Integrative and Comparative Physiology, Vol. 283, No. 5, 2002, pp. R1046-R1051.
[15] L. A. Velloso, et al., “Cross-Talk between the Insulin and Angiotensin Signaling Systems,” Proceedings of the National Academy of Sciences of USA, Vol. 93, No. 22, 1996, pp. 12490-12495. doi:10.1073/pnas.93.22.12490
[16] M. Furuhashi, N. Ura, K. Higashiura et al., “Blockade of the Renin-Angiotensin System Increases Adiponectin Concentrations in Patients with Essential Hypertension,” Hypertension, Vol. 42, No. 1, 2003, pp. 76-81. doi:10.1161/01.HYP.0000078490.59735.6E
[17] R. Clasen, M. Schupp, A. Foryst-Ludwig, et al., “PPARg-Activating Angiotensin Type-1 Receptor blockers Induce Adiponectin,” Hypertension, Vol. 46, No. 1, 2005, pp. 137-143. doi:10.1161/01.HYP.0000168046.19884.6a
[18] L. Qlao and J. Shao, “SIRT 1 Regulates Adiponectin Gene Expression through Foxo-C/Enhancer Binding Protein α Transcriptional Complex,” The Journal of Biological Chemistry, Vol. 281, No. 52, 2006, pp. 30015-30034.
[19] D. Accili, “Lilly Lecture 2003,” Diabetes, Vol. 53, No. 7, 2004, pp. 1633-1642. doi:10.2337/diabetes.53.7.1633
[20] A. Barthel, “FoxO Proteins in Insulin Action and Metabolism,” Trends in Endocrinology & Met, Vol. 16, No. 4, 2005, pp. 183-189. doi:10.1016/j.tem.2005.03.010
[21] J. E. Hall, et al., “Obesity Hypertension: Role of Leptin and Sympathetic Nervous System,” American Journal of Hematology, Vol. 14, No. 6, 2001, pp. 103S-115S.
[22] Y. F. Guan, Ch. Hao, et al., “Thiazolidinediones Expand Body Fluid Volume through PPARγ Stimulation of ENaC-Mediated Renal Salt Absorption,” Nature Medicine, Vol. 11, No. 8, 2005, pp. 861-866. doi:10.1038/nm1278
[23] K. Tachibana, N. Anzai, et al., “Analysis of PPAR Alpha Function in Human Kidney Cell Line Using siRNA,” Nucleic Acids Symposium Series (Oxford), Vol. 50, No. 1, 2006, pp. 257-258. doi:10.1093/nass/nrl128
[24] A. C. Calkin, S. Giunti, et al., “PPAR α-γ Agonists Attenuate Diabetic Kidney Disease in the Apolipoprotein E Knockout Mouse,” Nephrology Dialysis Transplantation, Vol. 21, No. 9, 2006, pp. 2399-2405. doi:10.1093/ndt/gfl212
[25] W. H. Tang, “Do Thiazolidinediones Cause Heart Failure? A Critical Review,” Cleveland Clinic Journal of Medicine, Vol. 73, No. 4, 2006, pp. 390-396. doi:10.3949/ccjm.73.4.390
[26] S. Farmer, “Transcriptional Control of Adipocyte Formation,” Cell Metabolism, Vol. 4, No. 4, 2006, pp. 263-273. doi:10.1016/j.cmet.2006.07.001
[27] T. Harslof, L. Wamberg, et al., “Rosiglitazone Decreases Bone Mass and Bone Marrow Fat,” The Journal of Clinical Endocrinology & Metabolism, Vol. 96, No. 5, 2011, pp. 1541-1548. doi:10.1210/jc.2010-2077
[28] J. El-Hage, “Peroxisome Proliferator-Activated Receptor (PPAR) Agonists Preclinical and Clinical Cardiac Safety Considerations.” www.fda.gov/downloads/AboutFDA/.../CDER/ucm119071.pdf
[29] M. Asakawa, H. Takano, T. Nagai, H. Uozumi, et al., “Peroxisome Proliferator-Activated Receptor Gamma Plays a Critical Role in Inhibition of Cardiac Hypertrophy in Vitro and in Vivo,” Circulation, Vol. 105, No. 10, 2002, pp. 1240-1246. doi:10.1161/hc1002.105225
[30] K. Yamamoto, R. Ohki, R. T. Lee, U. Ikeda, et al., “Peroxisome Proliferator-Activated Receptor Gamma Activators Inhibit Cardiac Hypertrophy in Cardiac Myocytes,” Circulation, Vol. 104, No. 14, 2001, pp. 1670-1675. doi:10.1161/hc4001.097186
[31] L. Pan and K. W. Gross, “Transcriptional Regulation of Renin: An Update,” Hypertension, Vol. 45, No. 1, 2005, pp. 3-8.
[32] F. Djouadi, C. J. Weinheimer, J. E. Saffitz, et al., “A Gender-Related Defect in Lipid Metabolism and Glucose Homeostasis in Peroxisome Proliferator Activated Receptor Alpha-Deficient Mice,” Journal of Clinical Investigation, Vol. 102, No. 6, 1998, pp. 1083-1091. doi:10.1172/JCI3949
[33] Y. Jamshidi, H. E. Montgomery, H. W. Hense, et al., “Peroxisome Proliferator Activated Receptor Alpha Gene Regulates Left Ventricular Growth in Response to Exercise and Hypertension,” Circulation, Vol. 105, No. 8, 2002, pp. 950-955. doi:10.1161/hc0802.104535
[34] A. Planivila, M. Jové, A. Cabrero and M. Vásquez-Carrera, “Modula el Metabolismo Lipídico del Miocardio la Hipertrofia Cardíaca?” Nefrología, Vol. 24, No. 1, 2004, pp. 29-33.
[35] J. McGavock, R. G. Victor, R. H. Unger, et al., “Adiposity of the Heart,” Annals of Internal Medicine, Vol. 144, No. 7, 2006, pp. 517-524. doi:10.7326/0003-4819-144-7-200604040-00011
[36] P. J. Campbell, M. G. Carlson and N. Nurjhan, “Fat Metabolism in Human Obesity,” American Journal of Physiology, Vol. 266, No. 4, 1994, pp. E600-E605.
[37] V. P. Singh, L. Bao, R. Khode et al., “Intracellular Angiotensin II Production in Diabetic Rats Is Correlated With Cardiomyocyte Apoptosis, Oxidative Stress, and Cardiac Fibrosis,” Diabetes, Vol. 57, No. 12, 2008, pp. 3297-3306. doi:10.2337/db08-0805
[38] C. A. M. van Kesteren, et al., “Mannosa-6 Phosphate Receptor Mediated Internalization and Activation of Prorenin by Cardiac Cells,” Hypertension, Vol. 30, No. 6, 1999, pp. 1389-1396. doi:10.1161/01.HYP.30.6.1389
[39] G. Nguyen, F. Delarue, C. Burckle, et al., “Pivotal Role of the Renin/Prorenin Receptor in Angiotensin II Production and Celular Responses to Angiotensin,” Journal of Clinical Investigation, Vol. 109, No. 11, 2002, pp. 1417-1427.
[40] T. L. Reudelhuber, “Prorenin, Renin, and Their Receptor: Moving Targets,” Hypertension, Vol. 55, No. 5, 2010, pp. 1071-1074. doi:10.1161/HYPERTENSIONAHA.108.120279
[41] C. Petrel and E. Clauser, “Angiotensin II AT1 Receptor Constitutive Activation: From Molecular Mechanisms to Pathophysiology,” Molecular and Cellular Endocrinology, Vol. 302, No. 2, 2009, pp. 176-184. doi:10.1016/j.mce.2008.10.049
[42] R. N. Re, “The Clinical Implication of Tissue Renin Angiotensin Systems,” Current Opinion in Cardiology, Vol. 16, No. 6, 2001, pp. 317-327. doi:10.1097/00001573-200111000-00002
[43] P. J. Admiraal, et al., “Uptake and Proteolytic Activation of Prorenin by Cultured Human Endothelial Cells,” Journal of Hypertension, Vol. 17, No. 5, 1999, pp. 621-629. doi:10.1097/00004872-199917050-00005
[44] J. J. Saris, M. M. van den Eijnden, J. M. Lamers, et al., “Prorenin-Induced Myocyte Proliferation: No Role for Intracellular Angiotensin,” Hypertension, Vol. 39, No. 2, 2002, pp. 573-577. doi:10.1161/hy0202.103002
[45] H. Yokota, T. Nagacoa, et al., “Higher Levels of Prorenin Predict Development of Diabetic Retinopathy in Patients with Type 2 Diabetes,” Journal of the Renin-Angiotensin-Aldosterone System, Vol. 12, No. 3, 2011, pp. 290-294.
[46] L. Davies, G. R. Fulcher, A. Atkins, et al., “The Relationship of Prorenin Values to Microvascular Complications in Patients with Insulin Dependent Diabetes Mellitus,” Journal of Diabetes and Its Complications, Vol. 13, No. 1, 1999, pp. 45-51. doi:10.1016/S1056-8727(98)00020-8
[47] A. A. Franken, F. H. Derkx, A. J. Man in’t Veld, et al., “High Plasma Prorenin in Diabetes Mellitus and Its Correlation with Some Complications,” The Journal of Clinical Endocrinology & Metabolism, Vol. 71, No. 4, 1990, pp. 1008-1015. doi:10.1210/jcem-71-4-1008
[48] A. Ichihara, F. Suzuki, T. Nakagawa, et al., “Prorenin Receptor Blockade Inhibits Development of Glomerulosclerosis in Diabetic Angiotensin II Type 1a Receptor-Deficient Mice,” Journal of the American Society of Nephrology, Vol. 17, No. 7, 2006, pp. 1950-1961. doi:10.1681/ASN.2006010029
[49] A. Ichihara, Y. Kaneshiro, T. Takemitsu, et al. “Nonproteolytic Activation of Prorenin Contributes to Development of Cardiac Fibrosis in Genetic Hypertension,” Hypertension, Vol. 47, No. 5, 2006, pp. 894-900. doi:10.1161/01.HYP.0000215838.48170.0b
[50] H. J. Zhang, N. Noble, W. A. Border, et al., “ReceptorDependent Prorenin Activation and Induction of PAI-1 Expression in Vascular Smooth Muscle Cells,” American Journal of Physiology—Endocrinology and Metabolism, Vol. 295, No. 4, 2008, pp. E810-E819. doi:10.1152/ajpendo.90264.2008
[51] S. M. Nicholl, E. Roztocil and M. G. Davies, “Plasminogen Activator System and Vascular Disease,” Current Vascular Pharmacology, Vol. 4, No. 2, 2006, pp. 101-116. doi:10.2174/157016106776359880
[52] V. J. Dzau, “Theodore Cooper Lecture: Tissue Angiotensin and Pathobiology of Vascular Disease: A Unifying Hypothesis,” Hypertension, Vol. 37, No. 4, 2001, pp. 1047-1052. doi:10.1161/01.HYP.37.4.1047
[53] R. Muniyappa, M. Montagnani, K. Kon Koh, et al., “Cardiovascular Actions of Insulin,” Endocrine Reviews, Vol. 28, No. 5, 2007, pp. 463-491. doi:10.1210/er.2007-0006
[54] M. Motagnani, I. Golychenco, et al., “Inhibition of Phosphatidylinositol 3-Kinasa Enhances Mitogenic Actions of Insulin in Endothelial Cells,” The Journal of Biological Chemistry, Vol. 277, No. 3, 2002, pp. 1794-1799. doi:10.1074/jbc.M103728200
[55] P. Delafontaine, Y. H. Song and Y. Li, “Expression, Regulation, and Function of IGF-1, IGF-1R, and IGF-1 Binding Proteins in Blood Vessels,” Arteriosclerosis, Thrombosis, and Vascular Biology, Vol. 24, No. 3, 2005, pp. 435-444. doi:10.1161/01.ATV.0000105902.89459.09
[56] D. Fliser, F. Schaefer, et al., “Angiotensin II Affects Basal, Pulsatile and Glucose-Stimulated Insulin Secretion in Humans,” Hypertension, Vol. 30, No. 5, 1997, pp. 1156-1161. doi:10.1161/01.HYP.30.5.1156
[57] K. J. Scheidegger, J. Du and P. Delafontaine, “Distinct and Common Pathways in the Regulation of Insulin-Like Growth Factor-1 Receptor Gene Expression by Angiotensin II and Basic Fibroblast Growth Factor,” The Journal of Biological Chemistry, Vol. 274, No. 6, 1999, pp. 3522-3530. doi:10.1074/jbc.274.6.3522
[58] P. Delafontaine and H. Lou, “Angiotensin II Regulates Insulin-Like Growth Factor I Gene Expression in Vascular Smooth Muscle Cells,” The Journal of Biological Chemistry, Vol. 268, No. 22, 1993, pp. 16866-16870.
[59] A. R. Collins, W. P. Meehan, U. Kintscher, et al., “Troglitazone Inhibits Formation of Early Atherosclerotic Lesions in Diabetic and Nondiabetic Low Densitity Lipoprotein Receptor-Deficient Mice,” Arteriosclerosis, Thrombosis, and Vascular Biology, Vol. 21, No. 3, 2001, pp. 365-371. doi:10.1161/01.ATV.21.3.365
[60] M. Schupp, J. Janke, R. Claren, T. Unger, et al., “Angiotensin Type 1 Receptor Blockers Induce Peroxisome Proliferator-Activated Receptor-Gamma Activity,” Circulation, 2004; Vol. 109, No. 17, pp. 2054-2057. doi:10.1161/01.CIR.0000127955.36250.65
[61] S. C. Benson, H. A. Pershadsingh, A. Chittiboyina, P. Desai, M. Pravenec, N. Qi, J. Wang, M. A. Avery and T. W. Kurtz, et al., “Identification of Telmisartan as a Unique Angiotensin II Receptor Antagonist with Selective PPAR-Gamma-Modulating Activity,” Hypertension, Vol. 43, No. 5, 2004, pp. 993-1002. doi:10.1161/01.HYP.0000123072.34629.57
[62] J. McMurray, et al., “Effect of Valsartan on the Incidence of Diabetes and Cardiovascular Events,” The New England Journal of Medicine, Vol. 362, No. 16, 2010, pp. 1477-1490. doi:10.1056/NEJMoa1001121
[63] G. Viberti and N. M. Wheeldon, “Microalbuminuria Reduction with Valsartan in Patients with Type 2 Diabetes Mellitus,” Circulation, Vol. 106, No. 6, 2002, pp. 672-678. doi:10.1161/01.CIR.0000024416.33113.0A
[64] H. H. Parving, H. Lehnert, J. Brochner-Mortensen, et al., “The Effect or Irbesartan on the Development of Diabetic Nephropathy in Patients with Type 2 Diabetes,” The New England Journal of Medicine, Vol. 345, No. 12, 2001; pp. 870-878. doi:10.1056/NEJMoa011489
[65] E. J. Lewis, L. G. Hunsicker, et al., “Collaborative Study Group, Irbesartan diabetic nephropathy trial (IDNT),” The New England Journal of Medicine, Vol. 345, 2001, pp. 851-860. doi:10.1056/NEJMoa011303
[66] B. Brenner, M. Cooper, D. Zeeuw, et al., “Effects of Losartan on Renal and Cardiovascular Outcomes in Type 2 Diabetes and Nephropathy,” The New England Journal of Medicine, Vol. 345, No. 12, 2001, pp. 861-869. doi:10.1056/NEJMoa011161
[67] A. H. Barnett, S. C. Bain, et al., “Angiotensin-Receptor Blockade versus Converting-Enzyme Inhibition in Type 2 Diabetes and Nephropathy,” The New England Journal of Medicine, Vol. 351, No. 19, 2004, pp. 1952-1961. doi:10.1056/NEJMoa042274
[68] P. Ruggenenti, A. Fassi, et al., “Preventing Microalbuminuria in Type 2 Diabetes,” The New England Journal of Medicine, Vol. 351, No. 19, 2004, pp. 1941-1951. doi:10.1056/NEJMoa042167
[69] G. Bakris, E. Burgess, M. Weir, et al., “Telmisartan Is More Effective than Losartan in Reducing Proteinuria in Patients with Diabetic Nephropathy,” Kidney International, Vol. 74, No. 3, 2008, pp. 364-369. doi:10.1038/ki.2008.204
[70] S. Yusuf, J. Ostergren, H. Gerstein, et al., “Effects of Candesartan on the Development of a New Diagnosis of Diabetes Mellitus in Patients With Heart Failure,” Circulation, Vol. 112, No. 1, 2005, pp. 48-53. doi:10.1161/CIRCULATIONAHA.104.528166
[71] G. Bakris, et al., “Rosiglitazone Reduces Urinary Albumin Excretion in type 2 Diabetes,” Journal of Human Hypertension, Vol. 17, No. 1, 2003, pp. 7-12. doi:10.1038/sj.jhh.1001444
[72] A. C. Calkin, S. Giunti, K. A. Jandeleit-Dahm, et al., “PPAR-alpha and -gamma Agonists Attenuate Diabetic Kidney Disease in the Apolipoprotein E Knockout Mouse,” Nephrology Dialysis Transplantation, Vol. 21, No. 9, 2006, pp. 2399-2405. doi:10.1093/ndt/gfl212
[73] C. Rosak, R. Petzoldt, R. Wolf, et al., “Rosiglitazone Plus Metformin is Effective and Well Tolerated in Clinical Practice. Results from Large Observational Studies in People with Diabetes,” International Journal of Clinical Practice, Vol. 59, No. 10, 2005, pp. 1131-1136. doi:10.1111/j.1368-5031.2005.00652.x
[74] L. Reynolds, E. Konz, R. Frederich, et al., “Rosiglitazone Amplifies the Benefits of Lifestyle Intervention Measures in Long-Standing Type 2 Diabetes Mellitus,” Diabetes, Obesity and Metabolism, Vol. 4, No. 4, 2002, pp. 270-275. doi:10.1046/j.1463-1326.2002.00207.x
[75] M. St. John Sutton, M. Rendell, P. Dandona, et al., “A Comparison of the Effects of Rosiglitazone and Glyburide on Cardiovascular Function and Glycemic Control in Patients with Type 2 Diabetes,” Diabetes Care, Vol. 25, No. 11, 2002, pp. 2058-2064. doi:10.2337/diacare.25.11.2058
[76] H. E. Lebovitz, J. F. Dole, R. Patwardhan, et al., “Rosiglitazone Montherapy Is Effective in Patients with Type 2 Diabetes,” The Journal of Clinical Endocrinology & Metabolism, Vol. 86, No. 1, 2001, pp. 280-288. doi:10.1210/jc.86.1.280
[77] M. I. Freed, R. Ratner, S. M. Marcovina, et al., “Effects of Rosiglitazone Alone and in Combination with Atorvastatin on the Metabolic Abnormalities in Type 2 Diabetes Mellitus,” American Journal of Cardiology, Vol. 90, No. 9, 2002, pp. 947-952. doi:10.1016/S0002-9149(02)02659-0
[78] S. M. Haffner, A. S. Greenberg, W. M. Weston, et al., “Effect of Rosiglitazone Treatment on Nontraditional Markers of Cardiovascular Disease in Patients with Type 2 Diabetes Mellitus,” Circulation, Vol. 106, No. 6, 2002, pp. 679-684. doi:10.1161/01.CIR.0000025403.20953.23
[79] N. Marx, T. Bourcier, G. K. Sukhova, et al., “PPARγ Activation in Human Endothelial Cells Increases Plasminogen Activator Inhibitor Type-1 Expression. PPARγ as a Potential Mediator in Vascular Disease,” Arteriosclerosis, Thrombosis, and Vascular Biology, Vol. 19, No. 3, 1999, pp. 546-551. doi:10.1161/01.ATV.19.3.546
[80] G. Bakris, G. Viberti, W. M. Weston, et al., “Rosiglitazone Reduces Urinary Albumin Excretion in Type 2 Diabetes,” Journal of Human Hypertension, Vol. 17, No. 1, 2003, pp. 7-12.
[81] A. Natali, S. Baldeweg, E. Toschi, B. Capaldo, D. Barbaro, et al., “Vascular Effects of Improving Metabolic Control with Metformin or Rosiglitazone in Type 2 Diabetes,” Diabetes Care, Vol. 27, No. 6, 2004, pp. 1349-1357. doi:10.2337/diacare.27.6.1349
[82] J. Dormandy, B. Charbonnel, D. Eckland, et al., “Secondary Prevention of Macrovascular Events in Patients with Type 2 Diabetes in the PROactive Study (Prospective Pioglitazone Clinical Trial in Macrovascular Events): A Randomized Controlled Trial,” Lancet, Vol. 366, No. 9493, 2005, pp. 1279-1289. doi:10.1016/S0140-6736(05)67528-9
[83] S. Nissen, S. Nicholls, K. Wolski, R. Nesto, et al., “Comparison of Pioglitazone vs Glimepiride on Progression of Coronary Atherosclerosis in Patients with Type 2 Diabetes: The PERISCOPE Randomized Controlled Trial,” JAMA, Vol. 299, No. 13, 2008, pp. 1561-1573. doi:10.1001/jama.299.13.1561
[84] I. Kuipers, P. van der Harst, G. Navis, et al., “Nuclear Hormones Receptors as Regulators of the Renina-Angiotensin-Aldosterone System,” Hypertension, Vol. 51, No. 6, 2008, pp. 1442-1448. doi:10.1161/HYPERTENSIONAHA.107.108530
[85] S. Nissen, K. Wolski and E. Topol, “Effect of Muraglitazar on Death and Major Adverse Cardiovascular Events in Patients with Type 2 Diabetes Mellitus,” JAMA, Vol. 294, No. 20, 2005, pp. 1-6. doi:10.1001/jama.294.20.joc50147
[86] S Nissen and K. Wolski, “Effect of Rosiglitazone on the Risk of Myocardial Infarction and Death from Cardiovascular Causes,” The New England Journal of Medicine, Vol. 356, No. 24, 2007, pp. 2457-2471. doi:10.1056/NEJMoa072761
[87] J. F. Mann, R. E. Schmieder, M. McQueen, et al., “Renal Outcomes with Telmisartan, Ramipril or Both, in People at High Vascular Risk (the ONTARGET Study): A Multicentre, Radomised, Double-Blind Controlled Trial,” Lancet, Vol. 372, No. 9638, 2008, pp. 547-553.
[88] H. H. Parving, B. Brenner, J. J. McMurray, et al., “Aliskiren Trial in Type 2 Diabetes Using Cardio-Renal Endpoints (ALTITUDE),” Nephrology Dialysis Transplantation, Vol. 34, No. 5, 2009, pp. 1663-1671. doi:10.1093/ndt/gfn721

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.