Temporal Evolution of Anodization Current of Porous Silicon Samples

Abstract

Temporal evolution of the anodization current of porous silicon samples was studied by means of a model of resistances connected in series that represented the temporal changes of the substrate and of the interface between the substrate and the electrolyte during the porous sample formation process. The porous samples were obtained by means of photoelectrochemical etching of (100) n-type silicon wafers with different resistivity values, all in the range of 1 - 25 Wcm. The samples were formed at room temperature in an electrolytic bath composed by a mixture of hydrofluoric acid (48%) and ethanol having a composition ratio of 1:1 in volume under potentiostatic condition (10 V and 20 V) and an etching time of 2 minutes using back illumination provided by a laser beam with a wavelength of 808 nm.

Share and Cite:

A. Gutiérrez, J. Giraldo and M. Rodríguez-García, "Temporal Evolution of Anodization Current of Porous Silicon Samples," Materials Sciences and Applications, Vol. 4 No. 8A, 2013, pp. 43-47. doi: 10.4236/msa.2013.48A005.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] X. G. Zhang, “Electrochemistry of Silicon and Its Oxides,” Kluwer Academic, Horwell, New York, 2001, p. 353.
[2] V. Torres-Costa, F. Agulló-Rueda,R. J. Martín-Palma and J. M. Martínez-Duart, “Porous Silicon Optical Devices for Sensing Applications,” Optical Materials, Vol. 27, No. 5, 2005, pp. 1084-1087. doi:10.1016/j.optmat.2004.08.068
[3] M. Archer, M. Christophersen and P. M. Fauchet, “Electrical Porous Silicon Chemical Sensor for Detection of Organic Solvents,” Sensors and Actuators B, Vol. 106, No. 1, 2005, pp. 347-357. doi:10.1016/j.snb.2004.08.016
[4] G. García Salgado, T. Díaz Becerril, H. Juárez Santiesteban and E. Rosendo Andrés, “Porous Silicon Organic Vapor Sensor,” Optical Materials, Vol. 29, No. 1, 2006, pp. 51-55. doi:10.1016/j.optmat.2006.03.012
[5] L. T. Canham, “Silicon Quantum Wire Array Fabrication by Electrochemical and Chemical Dissolution of Wafers,” Applied Physics Letters, Vol. 57, No. 10, 1990, p. 1046. doi:10.1063/1.103561
[6] V. Lehmann and H. Foll, “Formation Mechanism and Properties of Electrochemically Etched Trenches in nType Silicon,” Journal of the Electrochemical Society, Vol. 137, No. 2, 1990, pp. 653-659. doi:10.1149/1.2086525
[7] R. L. Smith and S. D. Collins, “Porous Silicon Formation Mechanisms,” Journal of Applied Physics, Vol. 71, No. 8, 1992, pp. R1-R22. doi:10.1063/1.350839
[8] M. Ben-Chorin, F. Moller and F. Koch, “Nonlinear Electrical Transport in Porous Silicon,” Physical Review B, Vol. 49, No. 4, 1994, pp. 2981-2984. doi:10.1103/PhysRevB.49.2981
[9] O. Bisi, S. Ossicini and L. Pavesi, “Porous Silicon: A Quantum Sponge Structure for Silicon Based Optoelectronics,” Surface Science Reports, Vol. 38, No. 1-3, 2000, pp. 1-126. doi:10.1016/S0167-5729(99)00012-6
[10] S. Lust and C. Levy-Clement, “Chemical Limitations of Macropore Formation on Medium-Doped p-Type Silicon,” Journal of The Electrochemical Society, Vol. 149, No. 6, 2002, pp. C338-C344. doi:10.1149/1.1475688
[11] X. Q. Bao, J. L. Lin, J. W. Jiao and Y. L. Wang, “Macropore Density as a Function of HF-Concentration and Bias,” Electrochimica Acta, Vol. 53, No. 2, 2007, pp. 823-828. doi:10.1016/j.electacta.2007.07.065
[12] M. Balarin, O. Gamulin, M. Ivanda, M. Kosovic, D. Ristic, M. Ristic, S. Music, K. Furic, D. Krilov and J. BrnjasKraljevic, “Structural, Optical and Electrical Characterization of Porous Silicon Prepared on Thin Silicon Epitaxial Layer,” Journal of Molecular Structure, Vol. 924-926, 2009, pp. 285-290. doi:10.1016/j.molstruc.2008.10.045
[13] V. Parkhutik, J. M. Martínez-Duart, E. Elizalde Pérez Grueso, R. Díaz Calleja and E. Matveeva, “Método de Formación de Estructuras Luminiscentes de Silicio Poroso,” Oficina Espanola de Patentes y Marcas, No. de Publicación: ES 2095793, Espana , 1997.
[14] J. I. Clavijo and E. Romero, “Efecto de Algunos Parámetros Experimentales Sobre las Propiedades ópticas y Morfológicas de Silicio Poroso Obtenido por Anodización de Silicio Tipo p,” Trabajo de Grado, Universidad Nacional de Colombia, Bogotá DC, 2004.
[15] A. Gutiérrez, J. Giraldo, R. Velázquez-Hernández, M. L. Mendoza-López, D. G. Espinosa-Arbeláez, A. Del Real and M. E. Rodríguez-García, “Electrochemical Differential Photoacoustic Cell to Study in Situ the Growing Process of Porous Materials,” Review of Scientific Instruments, Vol. 81, No. 1, 2010, Article ID: 013901. doi:10.1063/1.3271238
[16] D. R. Kwon, S. Ghosh and C. Lee, “Growth and Nucleation of Pores in n-Type Porous Silicon and Related Photoluminescence,” Materials Science and Engineering: B, Vol. 103, No. 1, 2003, p. 1-9. doi:10.1016/S0921-5107(03)00126-0
[17] G. S. Popkirov and S. Ottow, “In Situ Impedance Spectroscopy of Silicon Electrodes during the First Stages of Porous Silicon Formation,” Journal of Electroanalytical Chemistry, Vol. 429, No. 1-2, 1997, pp. 47-54. doi:10.1016/S0022-0728(97)00131-9
[18] X. G. Zhang, “Electrochemistry of Silicon and Its Oxides,” Kluwer Academic, Horwell, New York, 2001.
[19] J.-N. Chazalviel, F. Ozanam, N. Gabouze, S. Fella and R. B. Wehrspohn, “Quantitative Analysis of the Morphology of Macropores on Low-Doped p-Si,” Journal of the Electrochemical Society, Vol. 149, No. 10, 2002, pp. C511C520. doi:10.1149/1.1507594
[20] G. Barillaro, P. Bruschi and F. Pieri, “Two-Dimensional Macroscopical Simulations of Porous Silicon Growth,” Computational Materials Science, Vol. 24, 2002, p. 99.
[21] M. Ray, S. Ganguly, M. Das, S. M., Hossain and N. R. Bandyopadhyay, “Genetic Algorithm Based Search of Parameters for Fabrication of Uniform Porous Silicon Nanostructure,” Computational Materials Science, Vol. 45, No. 1, 2009, pp. 60-64. dx.doi.org/10.1016/j.commatsci.2008.03.052
[22] M. Christophersen, S. Langa, J. Carstensen, I. M. Tiginyanu and H. Foll, “A Comparison of Pores in Silicon and Pores in III-V Compound Materials,” Physica Status Solidi (a), Vol. 197, No. 1, 2003, pp. 197-203. doi:10.1002/pssa.200306499
[23] V. Lehmann, “Electrochemistry of Silicon: Instrumentation, Science, Materials and Applications,” Wiley-VCH Verlag GmbH, Weinheim, 2002, p. 115. doi:10.1002/3527600272

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.