Self-Organizing Processes in Semiconductor Materials Science on the Example of Nanostructuring of por-Si

DOI: 10.4236/msa.2013.48A001   PDF   HTML   XML   3,246 Downloads   5,390 Views   Citations


Self-organization processes in semiconductor materials on the example of nanostructuring of por-Si at long anodic etching of p-type Si in the electrolyte with internal source of the current are shown. In conditions of a “soft” etching of the Si point defects are formed and in the subsequently occurs their spatial-temporal ordering. This leads to the ordering pores and the nanostructuring of por-Si. Self-organization mechanism of Si nanocrystallites islets is described by the effects of the elastically-deformative, defectively-deformative and capillary-fluctuation forces.

Share and Cite:

K. Tynyshtykbaev, T. Aitmukan, A. Issova, B. Rakhymetov, M. Yeleuov and S. Tokmoldin, "Self-Organizing Processes in Semiconductor Materials Science on the Example of Nanostructuring of por-Si," Materials Sciences and Applications, Vol. 4 No. 8A, 2013, pp. 1-11. doi: 10.4236/msa.2013.48A001.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] K. B. Tynyshtykbaev, Yu A. Ryabikin, S. J. Tokmoldin and R. B. Vermenichev, “Surface of the Porous Silicon Received in Electrolyte with an Internal Source of a Current,” Materials Today, Vol. 13, No. 11, 2010, p. 3.
[2] N. N. Ledentsov, V. M. Ustinov, S. V. Ivanov, B. Ya. Mel’tser, M. V. Maksimov, P. S. Kop’ev, D. Bimberg and Zh. I. Alferov, “Ordered Quantum-Dot Arrays in Semiconducting Matrices,” Physics-Uspekhi, Vol. 39, No. 4, 1996, pp. 393-398.
[3] S. A. Kukushkin and A. V. Osipov, “Thin Film Condensation Processes,” Physics-Uspekhi, Vol. 4, No. 4, 1998, pp. 983-1014.
[4] K. B. Tynyshtykbaev, Yu. A. Ryabikin, S. Zh. Tokmoldin, T. Aytmukan, B. A. Rakymetov and R. B. Vermenichev, “The Morphology of Porous Silicon at Long Anodic Etching in Electrolyte with Internal Current Source,” Technical Physics Letters, Vol. 36, No. 6, 2010, pp. 538-540. doi:10.1134/S1063785010060155
[5] K. B. Tynyshtykbaev, Yu. A. Ryabikin, S. J. Tokmoldin, B. A. Rakymetov and T. Aytmukan, “Dynamics of the Formation of the Mosaic Structure of Porous Silicon at Long Anodic Etching in Electrolytes with Internal Power Source,” Physics of the Solid State, Vol. 53, No. 8, 2011, pp. 1575-1580. doi:10.1134/S1063783411080312
[6] V. I. Emelyanov, “Self-Organization of Ordered Ensembles of Nanoparticles upon Laser-Controlled Deposition of Atoms,” Quantum Electronics, Vol. 36, No. 6, 2006, pp. 489-507. doi:10.1070/QE2006v036n06ABEH013189
[7] A. Valance, “Porous Silicon Formation: Stability Analysis of the Silicon-Electrolyte Interface,” Physical Review, Vol. 52, No. 11, 1995, pp. 8323-8336. doi:10.1103/PhysRevB.52.8323
[8] A. V. Klimov and A. I. Grigor’ev, “On nonlinear Periodic Capillary-Fluctuation Wave Flow in a Thin Liquid Film on a Solid Substrate,” Technical Physics, Vol. 54, No. 10, 2009, pp. 1415-1422. doi:10.1134/S106378420910003X
[9] D. N. Goryachev, L. V. Belyakov and O. M. Sreseli, “The Electrolytic Process for the Preparation of Porous Silicon Using an Internal Current Source,” Semiconductors, Vol. 37, No. 4, 2003, pp. 494-498. doi:10.1134/1.1568472
[10] R. L. Smith and S. D. Collins, “Porous Silicon Formation Mechanisms,” Journal of Applied Physics, Vol. 71, No. 8, 1992, pp. 1-22. doi:10.1063/1.350839
[11] K. N. El’cov, V. A. Karavanskii and V. V. Martynov, “Modification of Porous Silicon in Ultrahigh Vacuum and the Contribution of Graphite Nanocrystals Photoluminescence,” JETP, Vol. 63, No. 2, 1996, pp. 106-111.
[12] A. S. Len’shin, V. M. Kashkarov, S. Yu. Turishchev, M. S. Smirnov and E. P. Domashevskaya, “Effect of Natural Aging on Photoluminescence of Porous Silicon,” Technical Physics Letters, Vol. 37, No. 9, 2011, pp. 789-792. doi:10.1134/S1063785011090124
[13] V. I. Emelyanov, K. I. Eremin and V. V. Starkov, “Defect-Deformation Mechanism of Spontaneous Nucleation of an Ensemble of Pores in Solids and Its Experimental Verification,” Quantum Electronics, Vol. 32, No. 6, 2002, pp. 473-475. doi:10.1070/QE2002v032n06ABEH002225
[14] V. I. Emelyanov, K. I. Eremin, V. V. Starkov and E. Yu. Gavrilin, “Quasi One-Dimensional Distribution of Macropores during the Anodic Etching of Uniaxial Strained Silicon Wafers,” Technical Physics Letters, Vol. 29, No. 6, 2003, pp. 19-25.
[15] V. I. Emelyanov, V. V. Igumnov and V. V. Starkov, “The Dynamics of Self-Organization of Hexagonal Pore Arrays during Anodic Etching and Oxidation of Semiconductors and Metals,” Technical Physics Letters, Vol. 30, No. 10, 2004, pp. 83-88.
[16] A. F. Andreev and A. Ya. Parshin, “Equilibrium Shape and Oscillations of the Surface of Quantum Crystals,” JETP, Vol. 48, No. 4, 1978, pp. 1511-1516.
[17] V. I. Marchenko and A. Ya. Parshin, “Elastic Properties of Crystal Surfaces,” JETP, Vol. 52, No. 1, 1980, pp. 157-160.
[18] V. I. Marchenko, “Possible Structures and Phase Transitions on the Surface of Crystals,” JETP, Vol. 33, No. 8, 1981, pp. 381-383.
[19] A. F. Andreev and Yu. A. Kosevich, “Capillary Phenomena in the Theory of Elasticity,” JETP, Vol. 81, No. 4, 1981, pp. 1435-1443.
[20] O. P. Pchelyakov, Yu. B. Bolkhovityanov, A. V. Dvurechenskii, L. V. Sokolov, A. I. Nikiforov, A. I. Yakimov and B. Voigtlander, “Silicon-Germanium Nanostructures with Quantum Dots: Formation Mechanisms and Electricalproperties,” Semiconductors, Vol. 34, No. 11, 2000, pp. 1229-1247. doi:10.1134/1.1325416
[21] V. I. Emelyanov and V. V. Starkov, “Nonlinear Dynamics of Self-Organization of Hexagonal Ensembles Since the Oxidation and Etching of Metals and Semiconductors,” Journal of Surface Investigation. X-Ray, Synchrotron and Neutron Techniques, Vol. 36, No. 11, 2006, pp. 53-68.
[22] Yu. B. Bolkhovityanov, V. I. Yudaev and A. K. Gutakovsky, “The Initial Stages of Heteroepitaxy from the Liquid Phase at a Low Misfit: InGaAsP on GaAs,” Thin Solid Films, Vol. 137, No. 1, 1986, pp. 111-121. doi:10.1016/0040-6090(86)90199-9
[23] D. F. Timokhov and F. P. Timokhov, “The Influence of the Crystallographic Orientation of the Silicon to Form Silicon Nanoclusters during Anodic Electrochemical Etching,” Semiconductors, Vol. 43, No. 1, 2009, pp. 95-99. doi:10.1134/S1063782609010175
[24] D. J. Eaglesham, A. E. White, L. C. Feldman, N. Moriya, and D. C. Jacobson, “Equilibrium Shape of Si,” Physical Review Letters, Vol. 70, No. 1, 1993, pp. 1643-1646. doi:10.1103/PhysRevLett.70.1643
[25] A. A. Shklyaev and M. Ichikawa, “Extremely Dense Arrays of Germanium and Silicon Nanostructures,” PhysicsUspekhi, Vol. 51, No. 2, 2008, pp. 133-161.
[26] L. V. Belyakov, D. N. Goryachev and O. M. Sreseli, “The Role of Singlet Oxygen in the Formation of Nanoporous Silicon,” Semiconductors, Vol. 41, No. 12, 2007, pp. 1473-1476. doi:10.1134/S1063782607120135
[27] V. F. Kiselev and O. V. Krylov, “Electronic Phenomena in Adsorption and Catalysis on Semiconductors and Dielectrics,” Nauka, Moscow, 1979.
[28] W. W. Mullins and R. F. Sekerka, “Stability of a Planar Interface During Solidification of a Dilute Binary Alloy,” Journal of Applied Physics, Vol. 35, No. 11, 1964, pp. 444-451. doi:10.1063/1.1713333
[29] N. N. Gerasimenko, K. K. Dzhamanbalin and N. A. Medetov, “Self-Assembled Nano-Structures on the Surface and in the Bulk Semiconductor,” Alem, Almaty, 2002.
[30] P. G. Cheremskoy, V. P. Betehtin and V. V. Slezov, “The Pores in the Solid State,” Energoatomizdat, Moscow, 1990.
[31] L. I. Fedina and A. L. Aseev, “Atomic Mechanisms of Clustering of Intrinsic Point Defects in Si,” In: A. L. Aseev, Ed., Nanotechnology in Semiconductor Electronics, Sibirean Branch Russian Academy of Sciences, Novosibirsk, 2004, pp. 179-201.
[32] K. B. Tynyshtykbaev, “Self-Organization of Highly Ordered Mosaic Structure of Porous Silicon at Long Anodic Etching of p-Type Silicon in the Electrolyte with Internal Current Source,” Proceeding of International Conference on Multimedia Technology (ICMT), Hangzhou, 26-28 July 2011, pp. 6528-6531.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.