Sobolev Gradient Approach for Huxley and Fisher Models for Gene Propagation

DOI: 10.4236/am.2013.48163   PDF   HTML     3,774 Downloads   5,007 Views   Citations

Abstract

The application of Sobolev gradient methods for finding critical points of the Huxley and Fisher models is demonstrated. A comparison is given between the Euclidean, weighted and unweighted Sobolev gradients. Results are given for the one dimensional Huxley and Fisher models.

Share and Cite:

N. Raza and S. Sial, "Sobolev Gradient Approach for Huxley and Fisher Models for Gene Propagation," Applied Mathematics, Vol. 4 No. 8, 2013, pp. 1212-1219. doi: 10.4236/am.2013.48163.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] J. Karatson and L. Loczi, “Sobolev Gradient Preconditioning for the Electrostatic Potential Equation,” Computers & Mathematics with Applications, Vol. 50, No. 7, 2005, pp. 1093-1104. doi:10.1016/j.camwa.2005.08.011
[2] R. Glowinski, “Numerical Methods for Nonlinear Varia tional Problems,” Springer-Verlag, New York, 1997.
[3] A. Zenisek, “Nonlinear Elliptic and Evolution Problems and Their Finite Element Approximations,” Academic Press, London, 1990.
[4] I. Farago and J. Karatson, “Numerical Solution of Nonlin ear Elliptic Problems via Preconditioning Operators,” Ad vances in Computation, Vol. II, Nova Science Publishers, New York, 2002.
[5] C. T. Kelley, “Iterative Methods for Linear and Nonlinear Equations,” SIAM: Frontiers in Applied Mathematics, Philadelphia, 1995.
[6] J. W. Neuberger, “Sobolev Gradients and Differential Equations,” Springer Lecture Notes in Mathematics 1670, Springer-Verlag, New York, 1997.
[7] W. T. Mahavier, “A Numerical Method Utilizing Weight ed Sobolev Descent to Solve Singluar Differential Equa tions,” Nonlinear World, Vol. 4, No. 4, 1997, pp. 435-455.
[8] D. Mujeeb, J. W. Neuberger and S. Sial, “Recursive form of Sobolev Gradient Method for ODEs on Long Intervals,” International Journal of Computer Mathematics, Vol. 85, No. 11, 2008, pp. 1727-1740. doi:10.1080/00207160701558465
[9] C. Beasley, “Finite Element Solution to Nonlinear Partial Differential Equations,” PhD Thesis, University of North Texas, Denton, 1981.
[10] S. Sial, J. Neuberger, T. Lookman and A. Saxena, “Energy Minimization Using Sobolev Gradients: Application to Phase Separation and Ordering,” Journal of Computation al Physics, Vol. 189, No. 1, 2003, pp. 88-97. doi:10.1016/S0021-9991(03)00202-X
[11] S. Sial, J. Neuberger, T. Lookman and A. Saxena, “En ergy Minimization Using Sobolev Gradients Finite Ele ment Setting,” Proceedings of World Conference on 21st Century Mathematics, Lahore, 4-6 March 2005, pp. 234 243.
[12] S. Sial, “Sobolev Gradient Algorithm for Minimum Ener gy States of s-Wave Superconductors: Finite Element Set ting,” Superconductor Science and Technology, Vol. 18, No. 5, 2005, pp. 675-677. doi:10.1088/0953-2048/18/5/015
[13] N. Raza, S. Sial and S. S. Siddiqi, “Sobolev Gradient Ap proach for the Time Evolution Related to Energy Minimi zation of Ginzberg-Landau Energy Functionals,” Journal of Computational Physics, Vol. 228, No. 7, 2009, pp. 2566-2571. doi:10.1016/j.jcp.2008.12.017
[14] J. Karatson and I. Farago, “Preconditioning Operators and Sobolev Gradients for Nonlinear Elliptic Problems,” Com puters & Mathematics with Applications, Vol. 50, No. 7, 2005, pp. 1077-1092. doi:10.1016/j.camwa.2005.08.010
[15] J. Karatson, “Constructive Sobolev Gradient Precondi tioning for Semilinear Elliptic Systems,” Electronic Jour nal of Differential Equations, Vol. 75, No. 1, 200, pp. 1-26.
[16] J. Garcia-Ripoll, V. Konotop, B. Malomed and V. Perez Garcia, “A Quasi-Local Gross-Pitaevskii Equation for At tractive Bose-Einstein Condensates,” Mathematics and Computers in Simulation, Vol. 62, No. 1-2, 2003, pp. 21 30. doi:10.1016/S0378-4754(02)00190-8
[17] B. Brown, M. Jais and I. Knowles, “A Variational Ap proach to an Elastic Inverse Problem,” Inverse Problems, Vol. 21, No. 6, 2005, pp. 1953-1973. doi:10.1088/0266-5611/21/6/010
[18] I. Knowles and A. Yan, “On the Recovery of Transport Parameters in Groundwater Modelling,” Journal of Com putational and Applied Mathematics, Vol. 71, No. 1-2, 2004, pp. 277-290. doi:10.1016/j.cam.2004.01.038
[19] R. J. Renka and J. W. Neuberger, “Sobolev Gradients: Introduction, Applications,” Contmporary Mathematics, Vol. 257, 2004, pp. 85-99.
[20] W. B. Richardson, “Sobolev Preconditioning for the Pois son-Boltzman Equation,” Computer Methods in Applied Mechanics and Engineering, Vol. 181, No. 4, 2000, pp. 425-436. doi:10.1016/S0045-7825(99)00182-6
[21] D. Mujeeb, J. W. Neuberger and S. Sial, “Recursive Forms of Sobolev Gradient for ODEs on Long Intervals,” International Journal of Computer Mathematics, Vol. 85, No. 11, 2008, pp. 1727-1740. doi:10.1080/00207160701558465
[22] R. J. Renka, “Geometric Curve Modeling with Sobolev Gradients,” 2006. www.cse.unt.edu/renka/papers/curves.pdf
[23] R. Nittka and M. Sauter, “Sobolev Gradients for Differen tial Algebraic Equations,” Journal of Differential Equations, Vol. 42, No. 1, 2008, pp. 1-31.
[24] R. A. Fisher, “The Wave of Advance of Advantageous Genes,” Annals of Eugenics, Vol. 7, No. 4, 1937, pp. 355 369. doi:10.1111/j.1469-1809.1937.tb02153.x
[25] R. Courant, K. O. Friedrichs and H. Lewy, “Uber die Par tiellen Differenzengleichungen der Mathematisches Phy sik,” Mathematische Annalen, Vol. 100, No. 1, 1928, pp. 32-74. doi:10.1007/BF01448839

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.