Share This Article:

On the Harmonic Index of Triangle-Free Graphs

Abstract Full-Text HTML Download Download as PDF (Size:107KB) PP. 1204-1206
DOI: 10.4236/am.2013.48161    2,885 Downloads   4,453 Views   Citations
Author(s)    Leave a comment


The harmonic index of a graph G  is defined as where d(u) denotes the degree of a vertex u in G . In this work, we give another expression for the Harmonic index. Using this expression, we give the minimum value of the harmonic index for any triangle-free graphs with order n and minimum degree δ k for kn/2  and show the corresponding extremal graph is the complete graph.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

J. Liu, "On the Harmonic Index of Triangle-Free Graphs," Applied Mathematics, Vol. 4 No. 8, 2013, pp. 1204-1206. doi: 10.4236/am.2013.48161.


[1] J. A. Bondy and U. S. R. Murty, “Graph Theory,” Springer, 2008. doi:10.1007/978-1-84628-970-5
[2] X. Li and I. Gutman, “Mathematical Aspects of Randic’ Type Molecular Structure Descriptors,” Mathematical Chemistry Monographs, Vol. 1, Kragujevac, 2006.
[3] X. Li and Y. T. Shi, “A Survey on the Randic Index,” MATCH: Communications in Mathematical and in Com puter Chemistry, Vol. 59, No. 1, 2008, pp. 127-156.
[4] B. Lucic, S. Nikolic, N. Trinajstic, B. Zhou and S. I. Turk, “Sum-Connectivity Index,” In: I. Gutman and B. Furtula, Eds., Novel Molecular Structure Descriptors-Theory and Applications I, University of Kragujevac, Kragujevac, 2010, pp. 101-136.
[5] B. Lucic, N. Trinajstic and B. Zhou, “Comparison be tween the Sum-Connectivity Index and Product-Con nectivity Index for Benzenoid Hydrocarbons,” Chemical Physics Letters, Vol. 475, No. 1-3, 2009, pp. 146-148. doi:10.1016/j.cplett.2009.05.022
[6] O. Favaron, M. Mahó and J. F. Saclé, ”Some Eigenvalue Properties in Graphs (Conjectures of Graffiti-II),” Dis crete Mathematics, Vol. 111, No. 1-3, 1993, pp. 197-220. doi:10.1016/0012-365X(93)90156-N
[7] L. Zhong, “The Harmonic Index for Graphs,” Applied Mathematics Letters, Vol. 25, No. 3, 2012, pp. 561-566. doi:10.1016/j.aml.2011.09.059
[8] R. Wu, Z. Tang and H. Deng, “A Lower Bound for the Harmonic Index of a Graph with Minimum Degree at Least Two,” Filomat, Vol. 27, No. 1, 2013, pp. 51-55.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.