Antioxidant Capacity and Phenolic Content of Some Nepalese Medicinal Plants


Antioxidant capacities and phenolic contents of medicinal plants namely Usnea longifolia, Cetraria nepalensis, Parmelia minarum, Everniastrum nepalense, Rhododendron anthopogon and Fritillaria delavayi were analyzed via Folin-Ciocaltau assay, Ferric reducing activity power assay and 2,2-Diphenyl-1-picrylhydrazyl assay. All the tested plants depicted the antioxidant activity with variation in extent of activity among the plants. The FRAP (F-value: 387.4), DPPH (F-value: 89.684) and TPC (F-value: 559.163) values between the extracts showed the highly significant differences (P < 0.01). This study indicated the strong antioxidant potential of R. anthopogon among the plants tested.

Share and Cite:

B. Maharjan and B. Baral, "Antioxidant Capacity and Phenolic Content of Some Nepalese Medicinal Plants," American Journal of Plant Sciences, Vol. 4 No. 8, 2013, pp. 1660-1665. doi: 10.4236/ajps.2013.48200.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] WHO, “World Health Organization: The World Medicines Situation 2011,” Traditional Medicines: Global Situation, Issues and Challenges, Geneva, 2011.
[2] LRMP—Land Resources Mapping Project, Survey Department, HMGN and Kenting Earth Sciences, Kathmandu, Nepal, 1986.
[3] B. Halliwell and J. M. C. Gutteridge, “Free Radicals in Biology and Medicine,” Oxford University Press, Oxford, 1999.
[4] K. J. Barnham, C. L. Masters and A. I. Bush, “Neurodegenerative Diseases and Oxidative Stress,” Nature Reviews Drug Discovery, Vol. 3, No. 3, 2004, pp. 205-214. doi:10.1038/nrd1330
[5] G. G. Duthie, S. J. Duthie and J. A. M. Kyle, “Plant Polyphenols in Cancer and Heart Disease: Implications as Nutritional Antioxidants,” Nutrition Research Reviews, Vol. 13, No. 1, 2000, pp. 79-106. doi:10.1079/095442200108729016
[6] N. Ito, S. Fukushima, A. Hasegawa, M. Shibata and T. Ogiso, “Carcinogenicity of Butylated Hydroxylanisole in F344 Rats,” Journal of National Cancer Institute, Vol. 70, 1983, pp. 343-344.
[7] M. Couladis, O. Tzakou and E. Verykokidou, “Screening of Some Greek Aromatic Plants for Aromatic Activity,” Phytotherapy Research, Vol. 17, 2003, pp. 194-196. doi:10.1002/ptr.1261
[8] R. Y. Gan, L. Kuang, X. R. Xu, Y. Zhang, E. Q. Xia and F. L. Song, “Screening of Natural Antioxidants from Traditional Chinese Medicinal Plants Associated with Treatment of Rheumatic Disease,” Molecules, Vol. 15, No. 9, 2010, pp. 5988-5997. doi:10.3390/molecules15095988
[9] F. Shahidi, P. K. Janitha and P. D. Wanasundara, “Phenolic Antioxidants,” Critical Reviews in Food Science and Nutrition, Vol. 32, No. 1, 1992, pp. 67-103. doi:10.1080/10408399209527581
[10] M. E. Buyukokuroglu, I. Gulcin, M. Oktay and O. I. Kufrevioglu, “In-Vitro Antioxidant Properties of Dantrolene Sodium,” Pharmacological Research, Vol. 44, No. 6, 2001, pp. 491-494. doi:10.1006/phrs.2001.0890
[11] K. S. Tiwari, S. N. Malhotra and N. K. Vishnoi, “A Textbook of Organic Chemistry,” 2nd Edition, Vikas Publishing House pvt. Ltd., Noida, 1992.
[12] A. Medina-Remon, R. Zamora-Ros, M. Rotches-Riballa, C. Andres-Lacueva, M. A. Martinez-Gonzalez, M. I. Covas, D. Corella, J. Salas-Salvado, E. Gomez-Gracia, V. Ruiz-Gutierrez, F. J. Garcia de La Corte, M. Fiol, M. A. Pena, G. T. Saez, E. Ros, L. Serra-Majem, X. Pinto, J. Warnberg, R. Estruch and R. M. Lamuela-Raventos, “Total Polyphenol Excretion and Blood Pressure in Subjects at High Cardiovascular Risk,” Nutrition, Metabolism and Cardiovascular Diseases, Vol. 21, No. 5, 2011, pp. 323-331. doi:10.1016/j.numecd.2009.10.019
[13] I. F. F. Benzie and J. J. Strain, “The Reducing Ability of Plasma as a Measure of ‘Antioxidant Power’—The FRAP Assay,” Analytical Biochemistry, Vol. 239, No. 1, 1996, pp. 70-76. doi:10.1006/abio.1996.0292
[14] W. Brand-Williams, M. E. Cuvelier and C. Berset, “Use of a Free Radical Method to Evaluate Antioxidant Activity,” Food Science and Technology, Vol. 28, No. 1, 1995, pp. 25-30. doi:10.1016/S0023-6438(95)80008-5
[15] K. E. Heim, A. R. Tagliaferro and D. J. Bobilya, “Flavonoid Antioxidants: Chemistry, Metabolism and Structure-Activity Relationships,” Journal of Nutritional Biochemistry. Vol. 13, No. 10, 2002, pp. 572-584. doi:10.1016/S0955-2863(02)00208-5
[16] N. C. Cook and S. Samman, “Flavonoids-Chemistry, Metabolism, Cardioprotective Effects and Dietary Sources,” Journal of Nutritional Biochemistry, Vol. 7, No. 2, 1996, pp. 66-76. doi:10.1016/S0955-2863(95)00168-9
[17] A. Podsedek, “Natural Antioxidants and Antioxidant Capacity of Brassica Vegetables: A Review,” LWT-Food Science and Technology, Vol. 40, No. 1, 2007, pp. 1-11. doi:10.1016/j.lwt.2005.07.023
[18] V. Roginsky and E. A. Lissi, “Review of Methods to Determine Chain-Breaking Antioxidant Activity in Food,” Food Chemistry, Vol. 92, No. 2, 2005, pp. 235-254. doi:10.1016/j.foodchem.2004.08.004
[19] J. Vaya, P. A. Belinky and M. Aviram, “Antioxidant Constituents from Licorice Roots: Isolation, Structure Elucidation and Antioxidative Capacity toward LDL Oxidation,” Free Radical Biology and Medicine, Vol. 23, No. 2, 1997, pp. 302-313. doi:10.1016/S0891-5849(97)00089-0
[20] M. Suhaj, “Spice Antioxidants Isolation and Their Antiradical Activity: A Review,” Journal of Food Composition and Analysis, Vol. 19, No. 6-7, 2006, pp. 531-537. doi:10.1016/j.jfca.2004.11.005
[21] B. Shan, Y. Z. Cai, M. Sun and H. Corke, “Antioxidant Capacity of 26 Spice Extracts and Characterization of Their Phenolic Constituents,” Journal of Agriculture and Food Chemistry, Vol. 53, No. 20, 2005, pp. 7749-7759. doi:10.1021/jf051513y
[22] C. Q. Wu, F. Chen, X. Wang, H. J. Kim, G. Q. He, V. Haley-Zitlin and G. Huang, “Antioxidant Constituents in Feverfew (Tanacetum parthenium) Extractand Their Chromatographic Quantification,” Food Chemistry, Vol. 96, No. 2, 2006, pp. 220-227. doi:10.1016/j.foodchem.2005.02.024
[23] C. Wong, H. Li, K. Cheng and F. Chen, “A Systematic Survey of Antioxidant Activity of 30 Chinese Medicinal Plants Using the Ferric Reducing Antioxidant Power Assay,” Food Chemistry, Vol. 97, No. 4, 2006, pp. 705-711. doi:10.1016/j.foodchem.2005.05.049
[24] T. H. Nash, “Lichen Biology,” Cambridge University Press, Cambridge, 1996.
[25] B. C. Behera, N. Verma, A. Sonone and U. Makhija, “Optimization of Culture Conditions for Lichen Usnea ghattensis G. Awasthi to Increase Biomass and Antioxidant Metabolite Production,” Food Technology and Biotechnology, Vol. 47, No. 1, 2009, pp. 7-12.
[26] P. D. Duh, Y. Y. Tu and G. C. Yen, “Antioxidant Activity of Aqueous Extract of Harng Jyur (Chrysanthemum morifolium Ramat),” LWT-Food Science and Technology, Vol. 32, No. 5, 1999, pp. 269-277. doi:10.1006/fstl.1999.0548
[27] F. Atalay, M. B. Halici, A. Mavi, A. Cakir, F. Odabasoglu, C. Kazaz, A. Aslan and O. I. Kufrevioglu, “Antioxidant Phenolics from Lobaria pulmonaria (L.) Hoffm. and Usnea longissima Ach. Lichen Species,” Turkish Journal of Chemistry, Vol. 35, 2011, pp. 647-661.
[28] E. Karimi, H. Z. E. Jaafar and S. Ahmad, “Phenolics and Flavonoids Profiling and Antioxidant Activity of Three Varieties of Malaysian Indigenous Medicinal Herb Labisia pumila Benth,” Journal of Medicinal Plants Research, Vol. 5, No. 7, 2011, pp. 1200-1206.
[29] S. R. Kanatt, R. Chander and A. Sharma, “Antioxidant Potential of Mint (Mentha spicata L.) in Radiation-Processed Lamb Meat,” Food Chemistry, Vol. 100, No. 2, 2007, pp. 451-458. doi:10.1016/j.foodchem.2005.09.066

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.