Simultaneous Waste Water Purification via Photocatalysis and Seed Germination

DOI: 10.4236/gsc.2013.33015   PDF   HTML     4,478 Downloads   8,113 Views   Citations


Preliminary results of our study related to simultaneous waste water purification by photocatalytic degradation of organic impurity (Methylene Blue dye) and its effects on seed germination are presented here. It is interesting and important to know that complete degradation of the dye occurs within 2 hours and does not adversely affect the seed germination process. It is concluded that waste water purification by photocatalysis and seed germination (agriculture) can be carried out simultaneously, opening a way for advanced agriculture.

Share and Cite:

S. Sawant, A. Nene, S. Somani, S. Omanwar and P. Somani, "Simultaneous Waste Water Purification via Photocatalysis and Seed Germination," Green and Sustainable Chemistry, Vol. 3 No. 3, 2013, pp. 129-133. doi: 10.4236/gsc.2013.33015.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] A. Fujishima and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature, Vol. 238, No. 5358, 1972, pp. 37-38. doi:10.1038/238037a0
[2] M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann, “Environmental Applications of Semiconductor Photocatalysis,” Chemical Reviews, Vol. 95, No. 1, 1995, pp. 69-96. doi:10.1021/cr00033a004
[3] K. Hashimoto, H. Irie and A. Fujishima, “TiO2 Photocatalysis: A Historical Overview and Future Prospects,” Japanese Journal of Applied Physics, Vol. 44, No. 12, 2005, pp. 8269-8285. doi:10.1143/JJAP.44.8269
[4] M. N. Chong, B. Jin, C. W. K. Chow and C. Saint, “Recent Developments in Photocatalytic Water Treatment Technology: A Review,” Water Research, Vol. 44, No. 10, 2010, pp. 2997-3027. doi:10.1016/j.watres.2010.02.039
[5] U. G. Akpan and B. H. Hameed, “Parameters Affecting the Photocatalytic Degradation of Dyes Using TiO2-Based Photocatalysts: A Review,” Journal of Hazardous Materials Vol. 170, No. 2-3, 2009, pp. 520-529. doi:10.1016/j.jhazmat.2009.05.039
[6] M. M. Ba-Abbada, A. A. H. Kadhum, A. B. Mohamad, M. S. Takriff and K. Sopian, “Solar Photocatalytic Degradation of Environmental Pollutants Using ZnO Prepared by Sol-Gel: 2,4-Dichlorophenol as Case Study,” International Journal of Thermal & Environmental Engineering, Vol. 1, No. 1, 2010, pp. 37-42. doi:10.5383/ijtee.01.01.006
[7] Y. Izumi, “Recent Advances in the Photocatalytic Conversion of Carbon Dioxide to Fuels with Water and/or Hydrogen Using Solar Energy and Beyond,” Coordination Chemistry Reviews, Vol. 257, No. 1, 2013, pp. 171-186. doi:10.1016/j.ccr.2012.04.018
[8] K. Kabra, R. Chaudhary and R. L. Sawhney, “Treatment of Hazardous Organic and Inorganic Compounds through Aqueous-Phase Photocatalysis: A Review,” Industrial & Engineering Chemistry Research, Vol. 43, No. 24, 2004, pp. 7683-7696. doi:10.1021/ie0498551
[9] S. Buzby, M. A. Barakat, H. Lin, C. Ni, S. A. Rykov, J. G. Chen and S. I. Shah, “Visible Light Photocatalysis with Nitrogen-Doped Titanium Dioxide Nanoparticles Prepared by Plasma Assisted Chemical Vapor Deposition,” Journal of Vacuum Science & Technology B, Vol. 24, No. 3, 2006, pp. 1210-1214. doi:10.1116/1.2192544
[10] J. Lee, H. S. Shim, M. Lee, J. K. Song and D. Lee, “Size-Controlled Electron Transfer and Photocatalytic Activity of ZnO-Au Nanoparticle Composites,” The Journal of Physical Chemistry Letters, Vol. 2, No. 22, 2011, pp. 2840-2845. doi:10.1021/jz2013352
[11] H. Chang, C. Su, C. H. Lo, L. C. Chen, T. T. Tsung and C. S. Jwo, “Photodecomposition and Surface Adsorption of Methylene Blue on TiO2 Nanofluid Prepared by ASNSS,” Materials Transactions, Vol. 45, No. 12, 2004, pp. 3334-3337. doi:10.2320/matertrans.45.3334
[12] B. Neppolian, H. Jung and H. Choi, “Photocatalytic Degradation of 4 Chlorophenol Using TiO2 and Pt TiO2 Prepared by Sol Gel Method,” Journal of Advanced Oxidation Technologies, Vol. 10, No. 2, 2007, pp. 001-006.
[13] G. Y. Yan, L. P. Zheng, L. S. Xie, X. L. Weng and J. H. Ye, “Nature of Ag-Bi-Codoped TiO2 Visible Light Photocatalyst,” Rare Metals, Vol. 30, Supplement 1, 2011, pp. 259-266. doi:10.1007/s12598-011-0281-x
[14] H. H. Li, C. Y. Liu, K. W. Li and H. Wang, “Preparation, Characterization and Photocatalytic Properties of Nanoplate Bi2MoO6 Catalysts,” Journal of Materials Science, Vol. 43, No. 22, 2008, pp. 7026-7034. doi:10.1007/s10853-008-3034-y
[15] J. Zhu, J.-G. Wang, Z.-F. Bian, F.-G. Cao and H.-X. Li, “Solvothermal Synthesis of Highly Active Bi2WO6 Visible Photocatalyst,” Research on Chemical Intermediates, Vol. 35, No. 6-7, 2009, pp. 799-806. doi:10.1007/s11164-009-0099-4
[16] Y. Zhang, J. Q. Yu, D. S. Yu, X. C. Zhou and W. Lu, “Enhancement in the Photocatalytic and Photoelectro-chemical Properties of Visible Light Driven BiVO4 Photocatalyst,” Rare Metals, Vol. 30, Supplement 1, 2011, pp. 192-198.
[17] K. Inoue, S. Suzuki and M. Nagai, “Ion Exchanged Potassium Titanoniobate as Photocatalyst under Visible Light” Journal of Electroceramics, Vol. 24, No. 2, 2010, pp. 110-114. doi:10.1007/s10832-008-9558-3

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.