[1]
|
A. D. Harries and C. Dye, “Tuberculosis,” Annals of Tro pical Medicine and Parasitology, Vol. 100, No. 5, 2006, pp. 415-443. doi:10.1179/136485906X91477
|
[2]
|
World Health Organization, “The Stop TB Strategy, Buil ding on and Enhancing DOTS to Meet the TB-Related Millennium Development Goals,” 2006.
|
[3]
|
W. D. Cuneo and D. J. Snider, “Enhancing Patient Com pliance with Tuberculosis Therapy,” Clinics in Chest Me dicine, Vol. 10, No. 3, 1989, pp. 375-380.
|
[4]
|
H. G. Tangüis, J. A. Caylà, P. García, J. M. Jansà and M. T. Brugal, “Factors Predicting Non-Completion of Tu berculosis Treatment among HIV-Infected Patients in Barcelona (1987-1996),” The International Journal of Tu berculosis and Lung Disease, Vol. 4, No. 1, 2000, pp. 55-60.
|
[5]
|
W. W. Yew, “Directly Observed Therapy Short-Course: The Best Way to Prevent Multidrug-Resistant Tuberculo sis,” Chemotherapy, Vol. 45, No. 2, 1999, pp. 26-33.
doi:10.1159/000048479
|
[6]
|
J. Legrand, A. Sanchez, F. Le Pont, L. Camacho and B. Larouze, “Modeling the Impact of Tuberculosis Control Strategies in Highly Endemic Overcrowded Prisons,” Plos One, Vol. 3, No. 5, 2008, Article ID: e2100.
doi:10.1371/journal.pone.0002100
|
[7]
|
S. Thiam, A. M. Le Fevre and F. Hane, “Effectiveness of a Strategy to Improve Adherence to tuberculosis Treat ment in a Resource-Poor Setting: A Cluster Randomized Controlled Trial,” Journal of the American Medical As sociation, Vol. 297, No. 4, 2007, pp. 380-386.
doi:10.1001/jama.297.4.380
|
[8]
|
W. J. Burman, D. L. Cohn, C. A. Rietmeijer, F. N. Judson, J. A. Sbarbaro and R. R. Reves, “Noncompliance with Directly Observed Therapy for Tuberculosis. Epidemiol ogy and Effect on the Outcome of Treatment” Chest, Vol. 111, No. 5, 1997, pp. 1168-1173.
doi:10.1378/chest.111.5.1168
|
[9]
|
P. D. O. Davies, “The Role of DOTS in Tuberculosis Treatment and Control,” American Journal of Respiratory Medicine, Vol. 2, No. 3, 2003, pp. 203-209.
doi:10.1007/BF03256649
|
[10]
|
A. V. Sitar-Taut, D. Zdrenghea, D. Pop and D. A. Sitar Taut, “Using Machine Learning Algorithms in Cardio vascular Disease Risk Evaluation,” Journal of Applied Computer Science & Mathematics, Vol. 5, No. 3, 2009, pp. 29-32.
|
[11]
|
M. Lazarescu, A. Turpin and S. Venkatesh, “An Appli cation of Machine Learning Techniques for the Classifi cation of Glaucomatous Progression,” Vol. 2396, Sprin ger-Verlag, Berlin, 2006.
|
[12]
|
J. I. Serrano, M. Tomécková and J. Zvárová, “Machine Learning Methods for Knowledge Discovery in Medical Data on Atherosclerosis,” European Journal of Biomedi cal Informatics, 2006.
|
[13]
|
I. Guyon and A. Elissee, “An Introduction to Variable and Feature Selection,” Journal of Machine Learning Re search, Vol. 3, 2003, pp. 1157-1182.
|
[14]
|
M. Dash and H. Liu, “Feature Selection for Classifica tion,” Intelligent Data Analysis, Vol. 1, No. 3, 1997, pp. 131-156. doi:10.1016/S1088-467X(97)00008-5
|
[15]
|
A. Field, “Discovering Statistics Using SPSS,” 2nd Edi tion, SAGE Publication LTD, London, 2005.
|
[16]
|
J. Han and M. Kamber, “Data Mining: Concepts and Techniques,” 2nd Edition, Morgan Kaufmann Publishers, Burlington, 2006.
|
[17]
|
E. Alpaydin, “Introduction to Machine Learning,” 1th Edition, The MIT Press, Cambridge, 2004.
|
[18]
|
S. B. Kotsiantis, “Supervised Machine Learning: A Re view of Classification Techniques,” Informatica, Vol. 31, No. 3, 2007, pp. 249-268.
|
[19]
|
E. Vittinghoff, S. C. Shiboski, D. V. Glidden and C. E. McCulloch, “Regression Methods in Biostatistics, Linear, Logistic, Survival, and Repeated Measures Models,” Sprin ger, Berlin, 2005.
|
[20]
|
S. Marsland, “Machine Learning: An Algorithmic Perspe ctive,” 1st Edition, Chapman and Hall, London, 2009.
|
[21]
|
L. Olson and D. Delen, “Advanced Data Mining Techni ques,” Springer, Berlin, 2008.
|
[22]
|
R. D. King, C. Feng and A. Sutherland, ”Statlog: Com parison of Classification Algorithms on Large Real World Problems,” Applied Artificial Intelligence, Vol. 9, No. 3, 1995, pp. 289-333.
|
[23]
|
I. Kurt, M. True and A. T. Kurum, “Comparing Performances of Logistic Regression, Classification and Regression Tree, and Neural Networks for Predicting Coronary Artery Disease,” Expert System Application, Vol. 34, 2008, pp. 366-374. doi:10.1016/j.eswa.2006.09.004
|
[24]
|
J. V. Tu, “Advantages and Disadvantages of Using Arti ficial Neural Networks Versus Logistic Regression for Predicting Medical Outcomes,” Journal of Clinical Epi demiology, Vol. 49, No. 11, 1996, pp. 1225-1231.
doi:10.1016/S0895-4356(96)00002-9
|