Influence of Micronized Chitosan on Antioxidative Activities in Grape Juice

DOI: 10.4236/fns.2013.48A028   PDF   HTML   XML   3,222 Downloads   5,385 Views   Citations

Abstract

The antioxidant activity of chitosan before micronization (BMC, average particle size of 1850 ± 26.3 μm) and after micronization (AMC, average particle size of 1.37 ± 0.2 μm) in grape juice was studied. Antioxidant activity was determined, including that of DPPH radicals, hydrogen peroxide and superoxide anion radicals, as well as ABTS radicals of BMC or AMC in grape juice. AMC exhibits stronger scavenging activity toward DPPH radicals, superoxide anion radicals and hydrogen peroxide than BMC. At a concentration of 1.0 mg/mL, AMC in grape juice exhibited 90.0%, 97.3% and 88.7% scavenging activities toward DPPH radicals, hydrogen peroxide and superoxide anion radicals, respectively. The TEAC (Trolox Equivalent Antioxidant Capacity) values of AMC (3.94 ± 0.19) greatly exceeded those of BMC (2.21 ± 0.10) in grape juice. The in vitro results in this investigation suggest the possibility that AMC can increase the antioxidant activity in grape juice. However, comprehensive studies must be performed to ascertain the in vivo safety of AMC in experimental animal models.

Share and Cite:

P. Chien, C. Li, C. Lee and H. Chen, "Influence of Micronized Chitosan on Antioxidative Activities in Grape Juice," Food and Nutrition Sciences, Vol. 4 No. 8A, 2013, pp. 224-228. doi: 10.4236/fns.2013.48A028.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. Fukuda, N. A. Peppas and J. W. McGinity, “Properties of Sustained Release Hot-Melt Extruded Tablets Containing Chitosan and Xanthan Gum,” International Journal of Pharmaceutics, Vol. 310, No. 1-2, 2006, pp. 90100. doi:10.1016/j.ijpharm.2005.11.042
[2] S. A. Agnihotri, N. N. Mallikarjuna and T. M. Aminabhavi, “Recent Advances on Chitosan-Based Microand Nanoparticles in Drug Delivery,” Journal of Controlled Release, Vol. 100, No. 1, 2004, pp. 5-28. doi:10.1016/j.jconrel.2004.08.010
[3] W. Xie, P. Xu and Q. Liu, “Antioxidative Activity of Water Soluble Chitosan Derivatives,” Bioorganic and Medicinal Chemistry Letters, Vol. 11, No. 1, 2001, pp. 16991701. doi:10.1016/S0960-894X(01)00285-2
[4] H. Y. Lin and C. C. Chou, “Antioxidative Activities of Water-Soluble Disaccharide Chitosan Derivatives,” Food Research International, Vol. 37, No. 9, 2004, pp. 883-889. doi:10.1016/j.foodres.2004.04.007
[5] K. Esumi, N. Takei and T. Yoshimura, “Antioxidant-Potentiality of Gold-Chitosan Nanocomposites,” Colloids and Surfaces B: Biointerfaces, Vol. 32, No. 2, 2003, pp. 117123. doi:10.1016/S0927-7765(03)00151-6
[6] R. Xing, S. Liu, H. Yu, Q. Zhang, Z. Li and P. Li, “Preparation of Low-Molecular-Weight and High-Sulfate-Content Chitosans under Microwave Radiation and Their Potential Antioxidant Activity in Vitro,” Carbohydrate Research, Vol. 339, No. 15, 2004, pp. 2515-2519. doi:10.1016/j.carres.2004.08.013
[7] A. Dávalos, B. Bartolomé and C. Gómez-Cordovés, “Antioxidant Properties of Commercial Grape Juices and Vinegars,” Food Chemistry, Vol. 93, No. 2, 2005, pp. 325330. doi:10.1016/j.foodchem.2004.09.030
[8] C. F. Chau, Y. L. Wen and Y. T. Wang, “Effects of the Micronization on the Characteristics and Physicochemical Properties of Insoluble Fibres,” Journal of the Science of Food and Agriculture, Vol. 86, No. 14, 2006, pp. 23802386. doi:10.1002/jsfa.2628
[9] K. Shimada, K. Fujikawa, K. Yahara and T. Nakamura, “Antioxidative Properties of Xanthan on the Anti-Oxidation of Soybean Oil in Cyclodextrin Emulsion,” Journal of Agricultural and Food Chemistry, Vol. 40, No. 6, 1992, pp. 945-948. doi:10.1021/jf00018a005
[10] G. C. Yen and D. Y. Chung, “Antioxidant Effects of Extracts from Cassia tora L. Prepared under Different Degrees of Roasting on the Oxidative Damage to Biomolecules,” Journal of Food Chemistry, Vol. 47, No. 4, 1999, pp. 1326-1332. doi:10.1021/jf9810618
[11] J. Robak and R. J. Gryglewski, “Flavonoids Are Scavengers of Superoxide Anions,” Biochemical Pharmacology, Vol. 37, No. 5, 1988, pp. 837-841. doi:10.1016/0006-2952(88)90169-4
[12] R. Pellegrini, N. Proteggente, A. Pannala, A. Yang and C. Rice-Evans, “Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay,” Free Radical Biology & Medicine, Vol. 26, No. 9-10, 1999, pp. 12311237. doi:10.1016/S0891-5849(98)00315-3
[13] M. J. T. J. Arts, J. S. Dallinga, H.-P. Voss, G. R. M. M. Haenen and A. Bast, “A New Approach to Assess the Total Antioxidant Capacity Using the TEAC Assay,” Food Chemistry, Vol. 88, No. 4, 2004, pp. 567-570. doi:10.1016/j.foodchem.2004.02.008
[14] L. C. Wu, H. W. Hsu, Y. C. Chen, C. C. Chiu, Y. I. Lin and J. A. Ho, “Antioxidant and Antiproliferative Activities of Red Pitaya,” Food Chemistry, Vol. 95, No. 2, 2006, pp. 319-327. doi:10.1016/j.foodchem.2005.01.002
[15] R. Berg van den, G. R. M. M. Haenen, H. Berg van den and A. Bast, “Applicability of an Improved Trolox Equivalent Antioxidant Capacity (TEAC) Assay for Evaluation of Antioxidant Capacity Measurements of Mixtures,” Food Chemistry, Vol. 66, No. 4, 1999, pp. 511-517. doi:10.1016/S0308-8146(99)00089-8
[16] T. Yamaguchi, H. Takamura, T. Matoba and J. Terao, “HPLC Method for Evaluation of the Free Radical-Scavenging Activity of Foods by Using 1,1-Diphenyl-2-picrylhydrazyl. Bioscience,” Biotechnology and Biochemistry, Vol. 62, No. 6, 1998, pp. 1201-1204. doi:10.1271/bbb.62.1201
[17] B. Halliwell and S. Chirico, “Lipid Peroxidation: Its Mechanism, Measurement, and Significance,” The American Journal of Clinical Nutrition, Vol. 57, No. 5, 1993, pp. 715-725.
[18] P. A. Hyslop, D. B. Hinshaw, W. A. J. Halsey, I. U. Schraufstatter, R. D. Sauerheber, R. G. Spragg, J. H. Jackson and C. G. Cochrane, “Mechanisms of Oxidant-Mediated Cell Injury the Glycolytic and Mitochondrial Pathways of ADP Phosphorylation Are Major Intracellular Targets Inactivated by Hydrogen Peroxide,” The Journal of Biological Chemistry, Vol. 263, No. 4, 1988, pp. 1665-1675.
[19] B. Halliwell, M. A. Murcia, S. Chirico and O. I. Aruoma, “Aruoma, Free Radicals and Antioxidants in Food and in Vivo: What They Do and How They Work,” Critical Reviews in Food Science and Nutrition, Vol. 35, No. 1-2, 1995, pp. 7-20. doi:10.1080/10408399509527682
[20] P. T. Gardner, T. A. C. White, D. B. McPhail and G. G. Duthie, “The Relative Contribution of Vitamin C, Carotenoids and Phenolics to the Antioxidant Potential of Fruit Juices,” Food Chemistry, Vol. 68, No. 4, 2000, pp. 471474. doi:10.1016/S0308-8146(99)00225-3

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.