Antioxidant Potential of Extracts from Processing Residues from Brazilian Food Industries

DOI: 10.4236/fns.2013.48A026   PDF   HTML     3,497 Downloads   5,228 Views   Citations

Abstract

The objective of this work was to estimate the antioxidant potential of the extracts from pink shrimp residue and red grape pomaces (Merlot and Syrah varietals), evaluated according to its antioxidant activity with different analytical methods, associating these properties with the chemical composition of the extract and, as a consequence, with the extraction procedure. The shrimp residue was pre-treated combining cooking, drying, and milling, whereas the grape pomaces were dried and ground. The shrimp residue extracts were obtained by Soxhlet (SOX) and by maceration using hexane (Hx), hexane: isopropanol (50:50) (Hx:IPA), isopropanol, ethanol (EtOH) and acetone as solvents; by ultrasonic maceration (UME) with EtOH; by cold and hot oil extraction with soy and sunflower oils; and by Supercritical Fluid Extraction (SFE) with pure CO2 (100 - 300 bar; 313.15 - 333.15 K) and with co-solvent (Hx: IPA and sunflower oil at 2%). The grape pomaces extracts were obtained by SOX using EtOH, ethyl acetate (EtOAc) and Hx; UME with water (H2O), EtOH, EtOAc and Hx; and by SFE performed with pure CO2 (150 - 300 bar; 323.15 - 333.15 K) and with cosolvent (EtOH at 15%). The antioxidant activity was determined by the DPPH free radical scavenging procedure and by the β-carotene bleaching method. Higher antioxidant activities in shrimp residue extracts were observed by the β-carotene bleaching method in alcoholic and cetonic extracts, among the low pressure extraction methods, while for the SFE, the higher activities were achieved by the extracts obtained at elevated pressures. For the grape pomaces extracts, the best results were obtained by the DPPH method from the low pressure extractions proceeded with EtOH. The SFE with Merlot pomace at 323.15 K/150 bar (the lowest temperature and pressures tested) presented the best antioxidant activity by the β-carotene bleaching.

Share and Cite:

N. Mezzomo, D. Oliveira and S. Ferreira, "Antioxidant Potential of Extracts from Processing Residues from Brazilian Food Industries," Food and Nutrition Sciences, Vol. 4 No. 8A, 2013, pp. 211-218. doi: 10.4236/fns.2013.48A026.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] FAO—Food and Agriculture Organization of United Nations, “Statistics of World Production in Fishing, year of 2007,” FISHSTAT, Rome, 2008.
[2] N. Mezzomo, B. Maestri, R. L. dos Santos, M. Maraschin and S. R. S. Ferreira, “Pink Shrimp (P. brasiliensis and P. paulensis) Processing Residue: Influence of Extraction Method on Carotenoid Concentration,” Talanta, Vol. 85, No. 3, 2011, pp. 1383-1391. doi:10.1016/j.talanta.2011.06.018
[3] A. A. S. Brum, M. Oetterer, M. A. B. Regitano-D’Arce, “óleo de Pescado Como Suplemento Dietético,” Revista Ciência & Tecnologia, Vol. 10, No. 19, 2002, pp. 71-78.
[4] Z.-C. Hu, Y.-O. Zheng, Z. Wang and Y.-C. Shen, “pH Control Strategy in Astaxanthin Fermentation Bioprocess by Xanthophyllomyces dendrorhous,” Enzyme and Microbial Technology, Vol. 39, No. 4, 2006, pp. 586-590. doi:10.1016/j.enzmictec.2005.11.017
[5] O. Takahashi and K. Hiraga, “Dose-Response Study of Hemorrhagic Death by Dietary Butylated Hydroxytoluene (BHT) in Male Rats,” Toxicology and Applied Pharmacology, Vol. 43, No. 2, 1978, pp. 399-406. doi:10.1016/0041-008X(78)90019-4
[6] H. Witschi and S. Lock, “Toxicity of Butylated Hydroxytoluene in Mouse Following Oral Administration,” Toxicology, Vol. 9, No. 1-2, 1978, pp. 137-146. doi:10.1016/0300-483X(78)90038-0
[7] J. A. Passoto, M. V. C. Penteado and J. Mancini-Filho, “Atividade Antioxidante Do B-Caroteno e da Vitamina A. Estudo Comparativo com Antioxidante Sintético,” Ciência e Tecnologia de Alimentos, Vol. 18, No. 1, 1998, pp. 68-72. doi:10.1590/S0101-20611998000100015
[8] M. Pinelo, A. Arnous and A. S. Meyer, “Upgrading of Grape Skins: Significance of Plant Cell-Wall Structural Components and Extraction Techniques for Phenol Release,” Trends in Food Science & Technology, Vol. 17, No. 11, 2006, pp. 579-590. doi:10.1016/j.tifs.2006.05.003
[9] G. K. Jayaprakasha, R. P. Singh and K. K. Sakariah, “Antioxidant Activity of Grape Seed (Vitis Vinifera) Extracts on Peroxidation Models in Vitro,” Food Chemistry, Vol. 73, No. 3, 2001, pp. 285-290. doi:10.1016/S0308-8146(00)00298-3
[10] C. Negro, L. Tommasi and A. Miceli, “Phenolic Compounds and Antioxidant Activity from Red Grape Marc Extracts,” Bioresource Technology, Vol. 87, No. 1, 2003, pp. 41-44. doi:10.1016/S0960-8524(02)00202-X
[11] V. Filip, M. Plocková, J. Smidrkal, Z. Spicková, K. Melzoch and S. Schmidt, “Resveratrol and Its Antioxidant and Antimicrobial Effectiveness,” Food Chemistry, Vol. 83, No. 4, 2003, pp. 585-593. doi:10.1016/S0308-8146(03)00157-2
[12] P. L. Teissedre, E. N. Frankel, A. L. Waterhouse, H. Peleg and J. B. German, “Inhibition of in Vitro Human LDL Oxidation by Phenolic Antioxidants from Grapes and Wines,” Journal of the Science of Food and Agriculture, Vol. 70, No. 1, 1996, pp. 55-61. doi:10.1002/(SICI)1097-0010(199601)70:1<55::AID-JSFA471>3.0.CO;2-X
[13] L. M. A. S. Campos, F. V. Leimann, R. C. Pedrosa and S. R. S. Ferreira, “Free Radical Scavenging of Grape Pomace Extracts from Cabernet Sauvingnon (Vitis vinifera),” Bioresource Technology, Vol. 99, No. 17, 2008, pp. 84138420. doi:10.1016/j.biortech.2008.02.058
[14] N. M. Sachindra and N. S. Mahendrakar, “Process Optimization for Extraction of Carotenoids from Shrimp Waste with Vegetable Oils,” Bioresource Technology, Vol. 96, No. 10, 2005, pp. 1195-1200. doi:10.1016/j.biortech.2004.09.018
[15] C. Zetzl, G. Brunner and M. A. A. Meireles, “Standardized Low-Cost Batch SFE Units for University Education and Comparative Research,” Proceedings of the 6th International Symposium on Supercritical Fluids, 28-30 April 2003, pp. 577-581.
[16] E. M. Z. Michielin, L. F. V. Bresciani, L. Danielski, R. A. Yunes and S. R. S. Ferreira, “Composition Profile of Horsetail (Equisetum giganteum L.) Oleoresin: Comparing SFE and Organic Solvents Extraction,” Journal of Supercritical Fluids, Vol. 33, No. 2, 2005, pp. 131-138. doi:10.1016/j.supflu.2004.07.004
[17] N. Mezzomo, J. Martínez, M. Maraschin and S. R. S. Ferreira, “Pink Shrimp (P. brasiliensis and P. paulensis) Residue: Supercritical Fluid Extraction of Carotenoid Fraction,” The Journal of Supercritical Fluids, Vol. 74, 2013, pp. 22-33. doi:10.1016/j.supflu.2012.11.020
[18] L. L. Mensor, F. S. Menezes, G. G. Leitao, A. S. Reis, T. C. dos Santos, C. S. Coube and S. G. Leitao, “Screening of Brazilian Plant Extracts for Antioxidant Activity by the Use of DPPH Free Radical Method,” Phitotherapy Research, Vol. 15, No. 2, 2001, pp. 127-130. doi:10.1002/ptr.687
[19] B. Matthaus, “Antioxidant Activity of Extracts Obtained from Residues of Different Oilseeds,” Journal Agriculture Food Chemistry, Vol. 50, No. 12, 2002, pp. 34443452. doi:10.1021/jf011440s
[20] J. A. Byers, “Phenomenex Catalog,” 2009. http://www.phenomenex.com/phen/Doc/z366.pdf
[21] C. S. G. Kitzberger, A. Smania Jr., R. C. Pedrosa and S. R. S. Ferreira, “Antioxidant and Antimicrobial Activities of Shiitake (Lentinula edodes) Extracts Obtained by Organic Solvents and Supercritical Fluids,” The Journal of Food Engineering, Vol. 80, No. 2, 2007, pp. 631-638. doi:10.1016/j.jfoodeng.2006.06.013
[22] P. P. Almeida, N. Mezzomo and S. R. S. Ferreira, “Extraction of Mentha spicata L. Volatile Compounds: Evaluation of Process Parameters and Extract Composition,” Food and Bioprocess Technology, Vol. 5, No. 2, 2012, pp. 548-559. doi:10.1007/s11947-010-0356-y
[23] Q. Hu, Y. Hu and J. Xu, “Free Radical-Scavenging Activity of Aloe Vera (Aloe barbadensis Miller) Extracts by Supercritical Carbon Dioxide Extraction,” Food Chemistry, Vol. 91, No. 1, 2005, pp. 85-90. doi:10.1016/j.foodchem.2004.05.052
[24] N. Shimidzu, M. Goto and W. Miki, “Carotenoids as Singlet Oxygen Quenchers in Marine Organisms,” Fisheries Science, Vol. 62, No. 1, 1996, pp. 134-137.
[25] J. C. La Fuente, B. Oyarzún, N. Quezada and J. M. Valle, “Solubility of Carotenoid Pigments (Lycopene and Astaxanthin) in Supercritical Carbon Dioxide,” Fluid Phase Equilibria, Vol. 247, No. 1-2, 2006, pp. 90-95. doi:10.1016/j.fluid.2006.05.031
[26] P. Benelli, C. A. S. Riehl, A. Smania Jr., E. F. A. Smania and S. R. S. Ferreira, “Bioactive Extracts of Orange (Citrus sinensis L. Osbeck) Pomace Obtained by SFE and Low Pressure Techniques: Mathematical Modeling and Extract Composition,” The Journal of Supercritical Fluids, Vol. 55, No. 1, 2010, pp. 132-140. doi:10.1016/j.supflu.2010.08.015
[27] N. Mezzomo, E. De Paz, A. Martín, M. J. Cocero and S. R. S Ferreira, “Supercritical Anti-Solvent Precipitation of Carotenoid Fraction from Pink Shrimp Residue: Effect of Operational Conditions on Encapsulation Efficiency,” The Journal of Supercritical Fluids, Vol. 66, 2012, pp. 342-349. doi:10.1016/j.supflu.2011.08.006
[28] M. Pinelo, P. Del Fabbro, L. Manzocco, M. J. Nunez and M. C. Nicoli, “Optimization of Continuous Phenol Extraction from Vitis vinifera Byproducts,” Food Chemistry, Vol. 92, No. 1, 2005, pp. 109-117. doi:10.1016/j.foodchem.2004.07.015

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.