Antioxidant Effect of Roasted Barley (Hordeum vulgare L.) Grain Extract towards Oxidative Stress in Vitro and in Vivo


The antioxidant activity of extract from roasted barley grain was evaluated by various methods in vitro and in vivo. Results showed that the extract exhibited high antioxidant activities in vitro and in vivo, evidenced by its ability to chelate ferrous ions, scavenge hydroxyl and superoxide radicals, and prevent lipid peroxidation of liver homogenate. The extract significantly increased the total antioxidant capability (T-AOC) in aged mice (P < 0.05). The activities of antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) increased while levels of malondialodehyde (MDA) and manoamine oxidase (MAO) decreased in both the liver and brain of aged mice treated with the extract compared to the control (untreated mice). The results demonstrate potential antioxidant activities and antiaging effect of roasted barley grain. This provides scientific support for the use of roasted barley grain as an antioxidant against oxidative stress.

Share and Cite:

M. Omwamba, F. Li, G. Sun and Q. Hu, "Antioxidant Effect of Roasted Barley (Hordeum vulgare L.) Grain Extract towards Oxidative Stress in Vitro and in Vivo," Food and Nutrition Sciences, Vol. 4 No. 8A, 2013, pp. 139-146. doi: 10.4236/fns.2013.48A017.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] J. Moskovitz, M. B. Yim and P. B. Chock, “Free Radicals and Disease,” Archives of Biochemistry and Biophysics, Vol. 397, No. 2, 2002, pp. 354-359. doi:10.1006/abbi.2001.2692
[2] H. Wang, X. D. Gao, G. C. Zhou, L. Cai and W. B. Yao, “In Vitro and in Vivo Antioxidant Activity of Aqueous Extract from Choerospondias axillaris Fruit,” Food Chemistry, Vol. 106, No. 3, 2008, pp. 888-895. doi:10.1016/j.foodchem.2007.05.068
[3] B. Halliwell and J. M. C. Gutteridge, “Role of Free Radicals and Catalytic Metal Ions in Human Disease: An Overview,” Methods of Enzymology, Vol. 186, 1990, pp. 1-85. doi:10.1016/0076-6879(90)86093-B
[4] A. K. Holtekjolen, A. B. Baevere, M. Rodbotten, H. Berg and S. H. Knutsen, “Antioxidant Properties and Sensory Profiles of Breads Containing Barley Flour,” Food Chemistry, Vol. 110, No. 2, 2008, pp. 414-421. doi:10.1016/j.foodchem.2008.02.054
[5] M. Omwamba and Q. Hu, “Antioxidant Capacity and Antioxidative Compounds in Barley (Hordeum vulgare L.) Grain Optimized Using Response Surface Methodology in Hot Air Roasting,” European Food Research and Technology, Vol. 229, No. 6, 2009, pp. 907-914. doi:10.1007/s00217-009-1128-7
[6] M. Omwamba and Q. Hu, “Antioxidant Activity in Barley (Hordeum Vulgare L.) Grains Roasted in a Microwave Oven under Conditions Optimized Using Response Surface Methodology,” Journal of Food Science, Vol. 75, No. 1, 2010, pp. C66-C77. doi:10.1111/j.1750-3841.2009.01426.x
[7] C. A. Rice-Evans, N. J. Miller and G. Paganga, “StructureAntioxidant Activity Relationships of Flavonoids and Phenolic Acids,” Free Radical Biology and Medicine, Vol. 20, No. 7, 1996, pp. 933-956. doi:10.1016/0891-5849(95)02227-9
[8] A. R. Rechner, G. Kuhnle, P. Bremner, G. P. Hubbard, K. P. Moore and C. A. Rice-Evans, “The Metabolic Fate of Dietary Polyphenols in Humans,” Free Radical Biology and Medicine, Vol. 33, No. 2, 2002, pp. 220-235.
[9] A. R. Rechner, M. A. Smith, G. Kuhnle, G. R. Gibson, E. S. Debnam, S. K. S. Srai, K. P. Moore and C. A. RiceEvans, “Colonic Metabolism of Dietary Polyphenols: Influence of Structure on Microbial Fermentation Products,” Free Radical Biology and Medicine, Vol. 36, No. 2, 2004, pp. 212-225.
[10] L. Yu and K. Zhou, “Antioxidant Properties of Bran Extracts from ‘Platte’ Wheat Grown at Different Locations,” Food Chemistry, Vol. 90, No. 1-2, 2005, pp. 311-316. doi:10.1016/j.foodchem.2004.04.007
[11] H. Etoh, K. Murakami, T. Yogoh, H. Ishikawa, Y. Fukuyama and H. Tanaka, “Anti-Oxidative Compounds in Barley Tea,” Bioscience, Biotechnology, and Biochemistry, Vol. 68, No. 12, 2004, pp. 2616-2618. doi:10.1271/bbb.68.2616
[12] P. Duh, G. Yen, W. Yen and L. Chang, “Antioxidant Effect of Water Extracts from Barley Prepared under Different Roasting Temperatures,” Journal of Agriculture and Food Chemistry, Vol. 49, No. 3, 2001, pp. 1455-1462. doi:10.1021/jf000882l
[13] X. Song, M.M. Bao, D.D. Li and Y.M Li, “Advanced Glycation in D-Galactose Induced Mouse Aging Model,” Mechanisms of Aging and Development, Vol. 108, No. 3, 1999, pp. 239-251. doi:10.1016/S0047-6374(99)00022-6
[14] V. L. Singleton and J. A. Rossi, “Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents,” American Journal of Enology and Viticulture, Vol. 16, No. 3, 1965, pp. 144-158.
[15] B. Hsu, I. M. Coupar and K. Ng, “Antioxidant Activity of Hot Water Extract from the Fruit of the Doum Palm, Hyphaene Thebaica,” Food Chemistry, Vol. 98, No. 2, 2006, pp. 317-328. doi:10.1016/j.foodchem.2005.05.077
[16] X.-Y. Su, Z.-Y. Wang and J.-R. Liu, “In Vitro and in Vivo Antioxidant Activity of Pinus koraiensis Seed Extract Containing Phenolic Compounds,” Food Chemisty, Vol. 117, No. 4, 2009, pp. 681-686. doi:10.1016/j.foodchem.2009.04.076
[17] G. C. Yen and C. L. Hsieh, “Antioxidant Activity of Extracts from Du-Zhong (Eucommia urmoides) towards Various Peroxidation Models in Vitro,” Journal of Agriculture and Food Chemistry, Vol. 46, No. 10, 1998, pp. 3952-3957. doi:10.1021/jf9800458
[18] O. H. Lowry, N. J. Rosebrough, A. L. Farr and R. J. Randall, “Protein Measurement with the Folin Phenol Reagent,” Journal of Biology and Chemistry, Vol. 193, No. 1, 1951, pp. 265-275.
[19] R. Manian, N. Anusuya, P. Siddhuraju and S. Manian, “The Antioxidant Activity and Free Radical Scavenging Potential of Two Different Solvent Extracts of Camellia sinensis (L.) O. Kuntz, Ficus bengalensis L. and Ficus racemosa L.,” Food Chemistry, Vol. 107, No. 3, 2008, pp. 1000-1007. doi:10.1016/j.foodchem.2007.09.008
[20] C. Manach, A. Scalbert, C. Morand, C. Remesy and L. Jimenez, “Polyphenols: Food Sources and Bioavailability,” American Journal of Clinical Nutrition, Vol. 79, No. 5, 2004, pp. 727-747.
[21] R. V. Lloyd, P. M. Hanna and R. P. Mason, “The Origin of the Hydroxyl Radical Oxygen in the Fenton Reaction,” Free Radical Biology and Medicine, Vol. 22, No. 5, 1997, pp. 885-888. doi:10.1016/S0891-5849(96)00432-7
[22] J. B. Jeong, S. C. Hong and H. J. Jeong, “3,4-Dihydroxybenzaldehyde Purified from the Barley Seeds (Hordeum vulgare) Inhibits Oxidative DNA Damage and Apoptosis via Its Antioxidant Activity,” Phytomedicine, Vol. 16, No. 1, 2009, pp. 85-94. doi:10.1016/j.phymed.2008.09.013
[23] S. J. Stohs and D. Bagchi, “Oxidative Mechanism in the Toxicity of Metal Ions,” Free Radical Biology and Medicine, Vol. 18, No. 2, 1995, pp. 321-336. doi:10.1016/0891-5849(94)00159-H
[24] S. S. Thomas, H. G. Michaelh and M. A. Jennife, “Antioxidant Properties of Malt Model Systems,” Journal of Agriculture and Food Chemistry, Vol. 53, No. 12, 2005, pp. 4938-4945. doi:10.1021/jf0501600
[25] B. Halliwell and J. M. C. Gutteridge, “Free Radicals in Biology and Medicine,” Oxford University Press, Oxford, 1999.
[26] G. Barrera, S. Pizzimenti and M. U. Dianzani, “Lipid Peroxidation: Control of Cell Proliferation, Cell Differentiation and Cell Death,” Molecular Aspects of Medicine, Vol. 29, No. 1-2, 2008, pp. 1-8. doi:10.1016/j.mam.2007.09.012
[27] G. C. Yen and H. Y. Chen, “Antioxidant Activity of Various Tea Extracts in Relation to Their Antimutagenicity,” Journal of Agriculture and Food Chemistry, Vol. 43, No. 1, 1995, pp. 27-32. doi:10.1021/jf00049a007
[28] H. Zhao, W. Fan, J. Dong, J. Lu, J. Chin, L. Shan, Y. Lin and W. Kong, “Evaluation of Antioxidant Activities and Total Phenolic Contents of Typical Malting Barley Varieties,” Food Chemistry, Vol. 107, No. 1, 2008, pp. 296304. doi:10.1016/j.foodchem.2007.08.018
[29] A. Kasdallah-Grissa, B. Mornagui, E. Aouani, M. Hammami, M. El May, N. Gharbi, A. Kamoun and S. El-Fazaa, “Resveratrol, a Red Wine Polyphenol, Attenuates Ethanol-Induced Oxidative Stress in Rat Liver,” Life Sciences, Vol. 80, No. 11, 2006, pp. 1033-1039. doi:10.1016/j.lfs.2006.11.044
[30] S. Casani, R. Gómez-Pastor and E. Matallana, “Antioxidant Compound Supplementation Prevents Oxidative Damage in a Drosophila Model of Parkinson’s Disease,” Free Radical Biology and Medicine, Vol. 61C, 2013, pp. 151-160. doi:10.1016/j.freeradbiomed.2013.03.021
[31] D. C. Yao, W. B. Shi, Y. L. Gou, X. R. Zhou, Y. A. Tak and Y. K. Zhou, “Fatty Acid-Mediated Intracellular Iron Translocation: A Synergistic Mechanism of Oxidative Injury,” Free Radical Biology and Medicine, Vol. 39, No. 10, 2005, pp. 1385-1398. doi:10.1016/j.freeradbiomed.2005.07.015
[32] G. Arteel, L. Marsano, C. Mendez, F. Bentley and C. J. McClain, “Advances in Alcoholic Liver Disease,” Best Practice and Research in Clinical Gastroenterology, Vol. 17, No. 4, 2003, pp. 625-647. doi:10.1016/S1521-6918(03)00053-2
[33] C. Y. Chen, P. E. Milbury, H. K. Kwak, F. W. Collins, P. Samuel and J. B. Blumberg, “Avenanthramides and Phenolic Acids from Oats Are Bioavailable and Act Synergistically with Vitamin C to Enhance Hamster and Human LDL Resistance to Oxidation,” Journal of Nutrition, Vol. 134, No. 6, 2004, pp. 1459-1466.
[34] H. R. Warner, “Superoxide Dismutase, Aging and Degenerative Disease,” Free Radical Biology and Medicine, Vol. 17, No. 3, 1994, pp. 249-258. doi:10.1016/0891-5849(94)90080-9
[35] S. Samuhasaneeto, D. Thong-Ngam, O. Kulaputana, D. Suyasunanont and N. Klaikeaw, “Curcumin Decreased Oxidative Stress, Inhibited NF-jB Activation, and Improved Liver Pathology in Ethanol-Induced Liver Injury in Rats,” Journal of Biomedical Biotechnology, Vol. 2009, 2009, Article ID: 981963. doi:10.1155/2009/981963

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.