Extraction of β-Carotene, Vitamin C and Antioxidant Compounds from Physalis peruviana (Cape Gooseberry) Assisted by High Hydrostatic Pressure

Abstract

High hydrostatic pressure assisted extraction (HHPE) has several advantages when compared to traditional extraction methods, which frequently cause degradation and loss of target components and might consume large volumes of environmentally unfriendly solvents. The aim of this study was to develop an assisted extraction method using high hydrostatic pressure (HHPE) and to evaluate both HHPE and conventional extraction methods for β-carotene, antioxidant compounds and vitamin C from cape gooseberry. β-carotene and compounds with antioxidant activity (2,2-diphenyl-1-picrylhydrazyl radical assay (DPPH*) or radical scavenging activity; ferric reducing antioxidant power assay (FRAP)) were extracted using HHPE for 5 min, 10 min and 15 min at 500 MPa, while vitamin C was extracted at 500 MPa for 30 s, 60 s and 90 s. Processing significantly affected (p 0.05) the β-carotene content of all samples, increasing retention by 8%, 14% and 15% at 500 MPa after 5 min, 10 min and 15 min of HPPE, respectively. The highest antioxidant content determined by DPPH* and FRAP assays was obtained in a sample treated at 500 MPa for 15 min, showing increases of 26% and 51%, respectively, compared with an untreated sample. The ascorbic acid content of fresh cape gooseberry was 26.31 mg·100 g-1. In fact, the ascorbic acid levels were significantly higher for all high-pressure-treated samples compared to this of conventionally extracted sample (p 0.05), exhibiting increases of 9%, 41% and 53% at 500 MPa after 30 s, 60 s and 90 s of HPPE, respectively. Thus, the application of HHPE produced higher β-carotene content, antioxidant compounds and vitamin C content and required less extraction time compared to other extraction methods. The pharmaceutical and food industries can benefit by using high pressure extraction technology.

Share and Cite:

V. Briones-Labarca, C. Giovagnoli-Vicuña, P. Figueroa-Alvarez, I. Quispe-Fuentes and M. Pérez-Won, "Extraction of β-Carotene, Vitamin C and Antioxidant Compounds from Physalis peruviana (Cape Gooseberry) Assisted by High Hydrostatic Pressure," Food and Nutrition Sciences, Vol. 4 No. 8A, 2013, pp. 109-118. doi: 10.4236/fns.2013.48A014.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] D. Hervert-Hernández, O. García, J. L. Rosado and I. Goni, “The Contribution of Fruit and Vegetables to Dietary Intake of Polyphenols and Antioxidant Capacity in a Mexican Rural Diet: Importance of Fruit and Vegetable Variety,” Food Research International, Vol. 44, No. 5, 2011, pp. 1182-1189. doi:10.1016/j.foodres.2010.09.021
[2] G. Du, M. Li, F. Ma and D. Liang, “Antioxidant Capacity and the Relationship with Polyphenol and Vitamin C in Actinidia Fruits,” Food Biotechnology, Vol. 113, No. 2, 2009, pp. 557-562.
[3] M. Ozgen, R. N. Reese, A. Tulio, J. Scheerens and R. Miller, “Modified 2,2-Azino-bis-3-ethylbenzothiazoline6-sulfonic Acid (ABTS) Method to Measure Antioxidant Capacity of Selected Small Fruits and Comparison to Ferric Reducing Antioxidant Power (FRAP) and 2,2’-Diphenyl-1-oicrylhydrazyl (DPPH) Methods,” Journal Agricultural and Food Chemistry, Vol. 54, No. 4, 2006, pp. 1151-1157. doi:10.1021/jf051960d
[4] E. M. Kuskoski, A. G. Asuero, A. M. Troncoso, J. Mancini-Filho and R. Fett, “Aplicación de Diversos Métodos Químicos Para Determinar Actividad Antioxidante en Pulpa de Frutos,” Ciência e Tecnologia de Alimentos, Vol. 25, No. 4, 2005, pp. 726-732. doi:10.1590/S0101-20612005000400016
[5] L. A. Puente, C. A. Pinto-Munoz, E. S. Castro and M. Cortés, “Physalis Peruviana Linnaeus, the Multiple Properties of a Highly Functional Fruit: A Review,” Food Research International, Vol. 44, No. 7, 2010, pp. 1733-1740. doi:10.1016/j.foodres.2010.09.034
[6] M. F. Ramadan, “Bioactive Phytochemicals, Nutritional and Funtional Properties of Cape Gooseberry (Physalis Peruviana): An Overview,” Food Research International, Vol. 44, No. 7, 2011, pp. 1830-1836. doi:10.1016/j.foodres.2010.12.042
[7] A. M. Castro, L. Rodriguez and E. M. Vargas, “Dry Gooseberry (Physalis peruviana L) with Pretreatment of Osmotic Dehydration,” Revista de la Facultad de Química Farmacéutica, Vol. 15, No. 2, 2008, pp. 226-231.
[8] M. F. Ramadan and J. Morsel, “Oil Goldenberry (Physalis Peruviana),” Journal of Agricultural and Food Chemistry, Vol. 51, No. 4, 2003, pp. 969-974. doi:10.1021/jf020778z
[9] P. C. Cardoso, A. P. B. Tomazini, P. C. Stringheta, S. M. R. Ribeiro and H. M. Pinheiro-Sant’Ana, “Vitamin C and Carotenoids in Organic and Conventional Fruits Grown in Brazil,” Food Chemistry, Vol. 126, No. 2, 2011, pp. 411416. doi:10.1016/j.foodchem.2010.10.109
[10] L. M. Laur and L. Tian, “Provitamin A and Vitamin C Contents in Selected California-Grown Cantaloupe and Honeydew Melons and Imported Melons,” Journal of Food Composition and Analysis, Vol. 24, No. 2, 2011, pp. 194-201. doi:10.1016/j.jfca.2010.07.009
[11] K. M. Phillips, M. T. Tarragó-Trani, S. E. Gebhardt, J. Exler, K. Y. Patterson, D. B. Haytowitz, P. R. Pehrsson and J. M. Holden, “Stability of Vitamin C in Frozen Raw Fruit and Vegetable Homogenates,” Journal of Food Composition and Analysis, Vol. 23, No. 3, 2010, pp. 253-259. doi:10.1016/j.jfca.2009.08.018
[12] C. Mertz, P. Brat, C. Caris-Veyrat and Z. Gunata, “Characterization and Thermal Lability of Carotenoids and Vitamin C of Tamarillo Fruit (Solanum betaceum Cav.),” Food Chemistry, Vol. 119, No. 2, 2010, pp. 653-659. doi:10.1016/j.foodchem.2009.07.009
[13] F. M. Campos, S. R. M. Ribeiro, C. M. D. Lucia, H. M. Pinheiro-Sant’Ana and P. C. Stringheta, “Optimization of Methodology to Analyze Ascorbic and Dehydroascorbic Acid in Vegetables,” Quim Nova, Vol. 32, No. 1, 2009, pp. 8791. doi:10.1590/S0100-40422009000100017
[14] Y. Hernández, M. G. Lobo and M. González, “Determination of Vitamin C in Tropical Fruits: A Comparative Evaluation of Methods,” Food Chemistry, Vol. 96, No. 4, 2006, pp. 654-664. doi:10.1016/j.foodchem.2005.04.012
[15] S. Zhang, Z. Junjie and W. Changzhen, “Novel High Pressure Extraction Technology,” International Journal Pharmaceutics, Vol. 278, No. 2, 2004, pp. 471-474. doi:10.1016/j.ijpharm.2004.02.029
[16] X. Jun, S. Deji, L. Ye and Z. Rui, “Comparison of in Vitro Antioxidant Activities and Bioactive Components of Green Tea Extracts by Different Extraction Methods,” International Journal Pharmaceutics, Vol. 408, No. 1-2, 2011, pp. 97-101. doi:10.1016/j.ijpharm.2011.02.002
[17] M. Corrales, S. Toepfl, P. Butz, D. Knorr and B. Tauscher, “Extraction of Anthocyanins from Grape By-Products Assisted by Ultrasonics, High Hydrostatic Pressure or Pulsed Electric Fields: A Comparison,” Innovative Food Science and Emerging Technologies, Vol. 9, No. 1, 2008, pp. 85-91. doi:10.1016/j.ifset.2007.06.002
[18] J. Ahmed and H. S. Ramaswamy, “High Pressure Processing of Fruit and Vegetables,” Stewart Postharvest Review, Vol. 2, No. 5, 2006, pp. 1-8. doi:10.2212/spr.2006.5.9
[19] S. Zhang, J. Xi and C. Z. Wang, “Effect of High Hydrostatic Pressure on Extraction of Flavonoids in Propolis,” Food Science and Technology International, Vol. 11, No. 3, 2005, pp. 213-216. doi:10.1177/1082013205054420
[20] K. N. Prasad, B. Yang, M. Zhao, N. Ruenroengklin and Y. Jiang, “Application of Ultrasonication or High-Pressure Extraction of Flavonoids from Litchi Fruit Pericarp,” Journal of Food Process Engineering, Vol. 32, No. 6, 2009, pp. 828-843. doi:10.1111/j.1745-4530.2008.00247.x
[21] S. Zhang, C. Ruizhan and W. Changzheng, “Experiment Study on Ultrahigh Pressure Extraction of Ginsenosides,” Journal of Food Engineering, Vol. 79, No. 1, 2007, pp. 1-5. doi:10.1016/j.jfoodeng.2005.12.048
[22] S. Zhang, R. Chen, H. Wu and C. Wang, “Ginsenoside Extraction from Panax quinquefolium L. (American Ginseng) Root by Using Ultrahigh Pressure,” Journal of Pharmaceutical and Biomedical Analysis, Vol. 41, No. 1, 2006, pp. 57-63. doi:10.1016/j.jpba.2005.10.043
[23] S. Zhang, H. Bi and C. Liu, “Extraction of Bio-Active Components from Rhodiola Sachalinensis under Ultrahigh Hydrostatic Pressure,” Separation and Purification Technology, Vol. 57, No. 2, 2007, pp. 277-282. doi:10.1016/j.seppur.2007.04.022
[24] Association of Official Analytical Chemists (AOAC), “Official Methods of Analysis,” 13th Edition, Washington DC, 1990.
[25] N. Koka, H. S. Burdurlu and F. Karadeniz, “Kinetics of Colour Changes in Dehydrated Carrots,” Journal of Food Engineering, Vol. 78, No. 2, 2007, pp. 449-455. doi:10.1016/j.jfoodeng.2005.10.014
[26] W. Brand-Williams, M. E. Cuvelier and C. Berset, “Use of Free Radical Method to Evaluate Antioxidant Activity,” Lebensmittel Wissenschaft und Technologie, Vol. 28, No. 1, 1995, pp. 25-30.
[27] D. O. Kim, K. W. Lee, H. J. Lee and C. Y. Lee, “Vitamin C Equivalent Antioxidant Capacity (VCEAC) of Phenolic Phytochemicals,” Journal Agricultural and Food Chemistry, Vol. 50, No. 13, 2002, pp. 3713-3717. doi:10.1021/jf020071c
[28] I. F. F. Benzie and J. J. Strain, “The Ferric Reducing Ability of Plasma (FRAP) as a Measure of ‘Antioxidant Power’: The FRAP Assay,” Analitycal Biochemistry, Vol. 239, No. 1, 1996, pp. 70-76. doi:10.1006/abio.1996.0292
[29] J. L. Silva, D. Foguel and C. A. Royer, “Review: Pressure Provides New Insights into Protein Folding, Dynamics and Structure,” Trends in Biochemical Sciences, Vol. 26, No. 10, 2001, pp. 612-618. doi:10.1016/S0968-0004(01)01949-1
[30] M. Cruz-Romero, M. Smiddy, C. Hill, J. P. Kerry and A. L. Kelly, “Effects of High Pressure Treatment on Physicochemical Characteristics of Fresh Oysters (Crassostrea gigas),” Innovative Food Science and Emerging Technologies, Vol. 5, No. 2, 2004, pp. 161-169. doi:10.1016/j.ifset.2004.01.002
[31] K. S. Lee and A. A. Kader, “Preharvest and Postharvest Factors Influencing Vitamin C Content of Horticultural Crops,” Postharvest Biology and Technology, Vol. 20, No. 3, 2000, pp. 207-220. doi:10.1016/S0925-5214(00)00133-2
[32] P. Elez-Martínez, R. C. Soliva-Fortuny and O. Martín-Belloso, “Comparative Study on Shelf Life of Orange Juice Processed by High Intensity Pulsed Electric Fields or Heat Treatment,” European Food Research and Technology, Vol. 222, No. 3-4, 2006, pp. 321-329. doi:10.1007/s00217-005-0073-3
[33] B. Tauscher, “Pasteurization of Food by Hydrostatic High Pressure: Chemical Aspects,” Zeitung Lebensmittel Unters Forschung, Vol. 200, No. 1, 1995, pp. 3-13. doi:10.1007/BF01192901
[34] A. Fernandez-Garcia, P. Butz and B. Tauscher, “Effects of High-Pressure Processing on Carotenoid Extractability, Antioxidant Activity, Glucose Diffusion, and Water Binding of Tomato Puree (Lycopersicon esculentum Mill.),” Journal of Food Science, Vol. 66, No. 7, 2001, pp. 10331038. doi:10.1111/j.1365-2621.2001.tb08231.x
[35] B. De Ancos, E. Gonzalez and M. P. Cano, “Effect of High-Pressure Treatment on the Carotenoid Composition and the Radical Scavenging Activity of Persimmon Fruit Purees,” Journal of Agricultural and Food Chemistry, Vol. 48, No. 8, 2000, pp. 3542-3548. doi:10.1021/jf990911w
[36] B. Krebbers, A. Matser, S. W. Hoogerwerf, R. Moezelaar, M. M. M. Tomassen and R. W. Van der Berg, “Combined High-Pressure and Thermal Treatments for Processing of Tomato Puree: Evaluation of Microbial Inactivation and Quality Parameters,” Innovative Food Science and Emerging Technologies, Vol. 4, No. 4, 2003, pp. 377-385. doi:10.1016/S1466-8564(03)00045-6
[37] P. Butz, R. Edenharder, A. Fernandez Garcia, H. Fister, C. Merkel and B. Tauscher, “Changes in Functional Properties of Vegetables Induced by High Pressure Treatment,” Food Research Institute Studies, Vol. 35, No. 2-3, 2002, pp. 295-300. doi:10.1016/S0963-9969(01)00199-5
[38] J. McInerney, C. Seccafien, C. Stewart and A. Bird, “Effects of High Pressure Processing on Antioxidant Activity, and Total Carotenoid Content and Availability, in Vegetables,” Innovative Food Science and Emerging Technologies, Vol. 8, No. 4, 2007, pp. 543-548. doi:10.1016/j.ifset.2007.04.005
[39] M. F. Ramadan and J. T. Morsel, “Impact of Enzymatic Treatment on Chemical Composition, Physicochemical Properties and Radical Scavenging Activity of Goldenberry (Physalis peruviana L.) Juice,” Journal of the Science of Food and Agriculture, Vol. 87, No. 3, 2007, pp. 452-460. doi:10.1002/jsfa.2728
[40] H. Dornenburg and D. Knorr, “Cellular Permeabilization of Cultured Plant Tissues by High Electric Field Pulses or Ultra-High Pressure for the Recovery of Secondary Metabolites,” Food Biotechnology, Vol. 7, No. 1, 1993, pp. 35-48. doi:10.1080/08905439309549844
[41] B. De Ancos, S. Sgroppo, L. Plaza and M. P. Cano, “Possible Nutritional and Health Related Value Promotion in Orange Juice Preserved by High-Pressure Treatment,” Journal of the Science of Food and Agriculture, Vol. 82, No. 8, 2002, pp. 790-796. doi:10.1002/jsfa.1093
[42] W. Qiu, H. Jiang, H. Wang and Y. Gao, “Effect of High Hydrostatic Pressure on Lycopene Stability,” Food Chemistry, Vol. 97, No. 3, 2006, pp. 516-523. doi:10.1016/j.foodchem.2005.05.032
[43] L. Plaza, C. Sánchez-Moreno, B. De Ancos and M. P. Cano, “Carotenoid Content and Antioxidant Capacity of Mediterranean Vegetable Soup (gazpacho) Treated by Highpressure/ Temperature During Refrigerated Storage,” European Food Research and Technology, Vol. 223, No. 2, 2006, pp. 210-215. doi:10.1007/s00217-005-0174-z
[44] S. Dede, H. Alpas and A. Bayindirli, “High Hydrostatic Pressure Treatment and Storage of Carrot and Tomato Juices: Antioxidant Activity and Microbial Safety,” Journal of the Science of Food and Agriculture, Vol. 87, No. 5, 2007, pp. 773-782. doi:10.1002/jsfa.2758
[45] H. Liu, N. Qiu, H. Ding and R. Yao, “Polyphenols Contents and Antioxidant Capacity of 68 Chinese Herbals Suitable for Medical or Food Uses,” Food Research International, Vol. 41, No. 4, 2008, pp. 363-370. doi:10.1016/j.foodres.2007.12.012
[46] C. K. R. Vijaya, D. Sreeramulu and M. Raghunath, “Antioxidant Activity of Fresh and Dry Fruits Commonly Consumed in India,” Food Research International, Vol. 43, No. 1, 2010, pp. 285-288. doi:10.1016/j.foodres.2009.10.006
[47] G. V. Barbosa-Canovas, U. R. Pothakamury, E. Palou and B. G. Swanson, “In Non Thermal Preservation of Foods,” Marcel Dekker, New York, 1998.
[48] Z. Shou-qin, B. Hui-min and L. Chang-Jiao, “Extraction of Bio-Active Components from Rhodiola sachalinensis under Ultrahigh Hydrostatic Pressure,” Separation and Purification Technology, Vol. 57, No. 2, 2007, pp. 277282. doi:10.1016/j.seppur.2007.04.022
[49] M. C. Foti, C. Dasquino and C. Geraci, “Electron-Transfer Reaction of Cinnamic Acids and Their Methyl Esters with the DPPH Radical in Alcohol Solutions,” Journal of Organic Chemistry, Vol. 69, No. 7, 2004, pp. 2309-2314. doi:10.1021/jo035758q
[50] R. L. Prior, X. Wu and K. Schaich, “Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements,” Journal of Agricultural and Food Chemistry, Vol. 53, No. 10, 2005, pp. 4290-4302. doi:10.1021/jf0502698
[51] J. Pérez-Jiménez, S. Arranz, M. Tabernero, M. E. DíazRubio, J. Serrano, I. Goní and F. Saura-Calixto, “Updated Methodology to Determine Antioxidant Capacity in Plant Foods, Oils and Beverages: Extraction, Measurement and Expression of Results,” Food Research International, Vol. 41, No. 3, 2008, pp. 274-285. doi:10.1016/j.foodres.2007.12.004

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.