[1]
|
[1] Keeney, M., Lai, J.H. and Yang, F. (2011) Recent progress in cartilage tissue engineering. Current Opinion in Biotechnology, 22, 734-740.
doi:10.1016/j.copbio.2011.04.003
|
[2]
|
Gupta, P.K., Chullikana, A., et al. (2012) Mesenchymal stem cells for cartilage repair in osteoarthritis. Stem Cell Research & Therapy, 3, 25.
|
[3]
|
Bian, L., Mauck, R.L., et al. (2011) Coculture of human mesenchymal stem cells and articular chondrocytes reduces hypertrophy and enhances functional properties of engineered cartilage. Tissue Engineering, Parts A, 17, 1137-1145. doi:10.1089/ten.tea.2010.0531
|
[4]
|
Ando, W., Moriguchi, Y., et al. (2012) Detection of abnormalities in the superficial zone of cartilage repaired using a tissue engineered construct derived from synovial stem cells. European Cells and Materials, 28, 292-307.
|
[5]
|
Meirelles, L.D.S. and Nardi, N.B. (2009) Methodology, biology and clinical applications of mesenchymal stem cells. Frontiers in Bioscience, 14, 4281-4298.
doi:10.2741/3528
|
[6]
|
Csaki, C., Schneider, P.R.A. and Shakibaei, M. (2008) Mesenchymal stem cells as a potential pool for cartilage tissue engineering. Annals of Anatomy-Anatomischer Anzeiger, 190, 395-412. doi:10.1016/j.aanat.2008.07.007
|
[7]
|
Chang, S.C.N., et al. (2008) Comparisons between sources of mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord and bone marrow. Tissue Engineering Part A, 14, 829-829.
|
[8]
|
Meyer, T., Pfeifroth, A. and Hoecht, B. (2008) Isolation and characterisation of mesenchymal stem cells in Wharton’s jelly of the human umbilical cord: Potent cells for cell-based therapies in paediatric surgery? European Surgery-Acta Chirurgica Austriaca, 40, 239-244.
doi:10.1007/s10353-008-0417-x
|
[9]
|
Wang, H.S., et al. (2004) Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells, 22, 1330-1337. doi:10.1634/stemcells.2004-0013
|
[10]
|
Cui, L., et al. (2012) Dynamic microRNA profiles of hepatic differentiated human umbilical cord lining-derived mesenchymal stem cells. PLoS One, 7.
doi:10.1371/journal.pone.0044737
|
[11]
|
Fang, T.-C., et al. (2012) Renoprotective effect of human umbilical cord-derived mesenchymal stem cells in immunodeficient mice suffering from acute kidney injury. PLoS One, 7. doi:10.1371/journal.pone.0046504
|
[12]
|
Margossian, T., et al. (2012) Mesenchymal stem cells derived from Wharton’s jelly: Comparative phenotype analysis between tissue and in vitro expansion. Bio-Medical Materials and Engineering, 22, 243-254.
|
[13]
|
Ruiz-Litago, F., et al. (2012) Adaptive response in the antioxidant defence system in the course and outcome in first-episode schizophrenia patients: A 12-months followup study. Psychiatry Research, 200, 218-222.
doi:10.1016/j.psychres.2012.07.024
|
[14]
|
Zitka, O., et al. (2012) Redox status expressed as GSH: GSSG ratio as a marker for oxidative stress in paediatric tumour patients. Oncology Letters, 4, 1247-1253.
|
[15]
|
Hatori, Y., et al. (2012) Functional partnership of the copper export machinery and glutathione balance in human cells. Journal of Biological Chemistry, 287, 26678-26687. doi:10.1074/jbc.M112.381178
|
[16]
|
Liu, H., et al. (2012) Selenium protects bone marrow stromal cells against hydrogen peroxide-induced inhibition of osteoblastic differentiation by suppressing oxidative stress and erk signaling pathway. Biological Trace Element Research, 150, 441-450.
doi:10.1007/s12011-012-9488-4
|
[17]
|
Del Carlo, M. and Loeser, R.F. (2003) Increased oxidative stress with aging reduces chondrocyte survival correlation with intracellular glutathione levels. Arthritis and Rheumatism, 48, 3419-3430. doi:10.1002/art.11338
|
[18]
|
Li, Z.-H., Zhao, W.-H. and Zhou, Q.-L. (2011) Experimental study of velvet antler polypeptides against oxidative damage of osteoarthritis cartilage cells. China Journal of Orthopaedics and Traumatology, 24, 245-248.
|
[19]
|
Takarada-Iemata, M., et al. (2011) Glutamate preferentially suppresses osteoblastogenesis than adipogenesis through the cystine/glutamate antiporter in mesenchymal stem cells. Journal of Cellular Physiology, 226, 652-665.
doi:10.1002/jcp.22390
|
[20]
|
Lo, W.-C., et al. (2013) Preferential therapy for osteoarthritis by cord blood MSCs through regulation of chondrogenic cytokines. Biomaterials, 34, 4739-4748.
doi:10.1016/j.biomaterials.2013.03.016
|
[21]
|
Bjornsson, S. (1993) Simultaneous preparation and quantitation of proteoglycans by precipitation with alcian blue. Analytical Biochemistry, 210, 282-291.
doi:10.1006/abio.1993.1197
|
[22]
|
Tichopad, A., et al. (2003) Standardized determination of real-time PCR efficiency from a single reaction set-up. Nucleic Acids Research, 31. doi:10.1093/nar/gng122
|
[23]
|
Kotwal, N., Sandy, J., et al. (2012) Initial application of EPIC-μCT to assess mouse articular cartilage morphology and composition: Effects of aging and treadmill running. Osteoarthritis Cartilage, 20, 887-895.
doi:10.1016/j.joca.2012.04.012
|
[24]
|
Kuo, S.M., et al. (2013) Evaluation of nanoarchitectured collagen type II molecules on cartilage engineering. Journal of Biomedical Materials Research Part A, 101, 368-377.
|
[25]
|
Gupta, P.K., et al. (2012) Mesenchymal stem cells for cartilage repair in osteoarthritis. Stem Cell Research & Therapy, 3. doi:10.1002/jbm.a.34335
|