[1]
|
H. L. Smith, “Competitive Coexistence in an Oscillating Chemostat,” SIAM Journal on Applied Mathematics, Vol. 40, No. 3, 1981, pp. 498-522. doi:10.1137/0140042
|
[2]
|
S. B. Hsu, “A Competition Model for a Seasonally Fluc tuation Nutrient,” Journal of Mathematical Biology, Vol. 9, No. 2, 1980, pp. 115-132.
|
[3]
|
G. J. Butler, S. B. Hsu and P. Waltman, “A Mathematical Model of the Chemostat with Periodic Washout Rate,” SIAM Journal on Applied Mathematics, Vol. 45, No. 3, 1985, pp. 435-449. doi:10.1137/0145025
|
[4]
|
P. Lemas, “Coexistence of Three Competing Microbial Populations in a Chemostat with Periodic Input and Dilu tion Rate,” Mathematical Bioscience, Vol. 129, No. 2, 1995, pp. 111-142. doi:10.1016/0025-5564(94)00056-6
|
[5]
|
S. S. Pilyugin and P. Waltman, “Competition in Unstirred Chemostat with Periodic Input and Washout,” SIAM Journal on Applied Mathematics, Vol. 59, No. 2, 1999, pp. 1157-1177.
|
[6]
|
X. He and S. Ruan, “Global Stability in Chemostat-Type Plankton Models with Delayed Nutrient Recycling,” Re search Report, The School of Mathematical and Statistics, University of Sydney, 1996, pp. 96-98.
|
[7]
|
S. Ruan, “The Effect of Delays on Stability and Persis tence in Plankton Models,” Nonlinear Analysis: Real Word Applications, Vol. 24, No. 4, 1995, pp. 575-585.
|
[8]
|
S. Ruan and X. He, “Global Stability in Chemostat-Type Competition Models with Nutrient Recycling,” SIAM Journal on Applied Mathematics, Vol. 58, No. 1, 1998, pp. 170-192. doi:10.1137/S0036139996299248
|
[9]
|
V. S. H. Rao and P. R. S. Rao, “Global Stability in Che mostat Models Involving Time Delays and Wall Growth,” Nonlinear Analysis: Real Word Applications, Vol. 5, No. 1, 2005, pp. 141-158.
|
[10]
|
S. R. J. Jang, “Dynamics of Variable-Yield Nutrient Phytoplankton-Zooplankton Models with Nutrient Recy cling and Self-Shading,” Journal of Mathematical Biol ogy, Vol. 40, No. 3, 2000, pp. 229-250.
doi:10.1007/s002850050179
|
[11]
|
S. Sun and L. Chen, “Complex Dynamics of a Chemotat with Variable Yield and Periodically Impulsive Perturba tion on the Substrate,” Journal of Mathematical Chemis try, Vol. 43, No. 1, 2008, pp. 338-348.
doi:10.1007/s10910-006-9200-z
|
[12]
|
V. Lakshmikantham, D. D. Bainov and P. S. Simeoonov, “Theory of Impulsive Differential Equations,” World Sci ence, Singapore City, 1989. doi:10.1142/0906
|
[13]
|
D. D. Bainov and P. S. Simeoonov, “Impulsive Differen tial Equations: Periodic Solutions and Applications,” Longman Scientific and Thechnical, London, 1993.
|
[14]
|
D. L. DeAngelis, R. A. Goldstein and R. V. Oneill, “A Model for Trophic Interaction,” Ecology, Vol. 56, No. 4, 1975, pp. 661-692. doi:10.2307/1936298
|
[15]
|
J. R. Beddington, “Mutual Interference between Parasites and Its Effect on Searching Efficiency,” Journal of Ani mal Ecology, Vol. 44, No. 1, 1975, pp. 331-340.
doi:10.2307/3866
|
[16]
|
Z. D. Teng, R. Gao, R. Mehbuba and K. Wang, “Global Behaviors of Monod type Chemostat Model with Nutrient Recycling and Impusive Onput,” Journal of Mathemati cal Chemistry, Vol. 47, No. 1, 2010, pp. 276-294.
doi:10.1007/s10910-009-9567-8
|