[1]
|
J. Nedelman, “Introductory Review: Some New Thoughts about Some Old Malaria Models,” Mathematical Biosci ences, Vol. 73, No. 2, 1985, pp. 159-182.
doi:10.1016/0025-5564(85)90010-0
|
[2]
|
J. L. Aron, “Mathematical Modelling of Immunity to Ma laria,” Mathematical Biosciences, Vol. 90, No. 1-2, 1988, pp. 385-396. doi:10.1016/0025-5564(88)90076-4
|
[3]
|
G. A. Ngwa and W. S. Shu, “Mathematical Model for En demic Malaria with Variable Human and Mosquito Po pulations,” 1999. http://www.ictp.treste.it
|
[4]
|
S. A. Al-Sheikh, “Modeling and Analysis of an SEIR Epidemic Model with a Limited Resource for Treatment,” Global Journal of Science Frontier Research: Mathemat ics and Decision Sciences, Vol. 12, No. 14, 2012, pp. 57-66.
|
[5]
|
P. van den Driessche and J. Watmough, “Reproduction Numbers and Sub-Threshold Endemic Equilibria for Com partmental Models of Disease Transmission,” Mathemat ics Biosciences, Vol. 180, No. 1-2, 2002, pp. 29-48.
doi:10.1016/S0025-5564(02)00108-6
|
[6]
|
J. H. Jones, “Notes on R0,” Stanford University, Stanford, 2007.
|
[7]
|
C.-M. Dabu, “MATLAB in Biomodeling,” In: C. Ionescu, Ed., MATLAB: A Ubiquitous Tool for the Practical Engi neering, InTech, Croatia, 2011.
|
[8]
|
O. Diekmann and J. A. P. Heesterbeek, “Mathematical Epi demiology of Infectious Diseases: Model Building, Ana lysis and Interpretation,” Wiley, New York, 1999.
|