Effects on Cell Viability and on Apoptosis in Tumoral (MCF-7) and in Normal (MCF10A) Epithelial Breast Cells after Human Chorionic Gonadotropin and Derivated-Angiotensin Peptides Treatments

DOI: 10.4236/jct.2013.47A010   PDF   HTML     4,209 Downloads   5,791 Views   Citations


Angiotensin-(1 - 7) [Ang-(1 - 7)] is an endogenous heptapeptide hormone of the renin-angiotensin system that has antiproliferative properties. The aim of this work was to evaluate the anti-proliferative and pro-apoptotic properties of Ang-(1 - 7) and of Ang-(1 - 7)-substituents 9-fluorenylmethyloxycarbonyl (Fmoc) e Ang II-derivatives containing the TOAC (2,2,6,6-tetramethylpiperidine-N-oxyl-4-amino-4-carboxylic acid) in normal (MCF10A) and in tumoral (MCF7) epithelial mammary cell lines. Both cell lines received an hCG and angiotensin peptides 24-hour treatment, in combination or alone followed by cell viability, apoptosis and cell cycle assays performed by flow cytometer (GUAVA). After hCG, Ang-(1 - 7), hCG + Ang-(1 - 7) and hCG + Ang-(1 - 7)-Fmoc treatments, MCF7 displayed cell viability decrease and mid-apoptosis increase. We also observed cell viability decrease in MCF10A after Ang-(1 - 7), Ang-(1 - 7) Fmoc and hCG + AngII Toac treatments. These cells had an increase in late apoptosis and necrosis after AngII Toac, hCG + Ang-(1 - 7) and hCG + Ang-(1 - 7)-Fmoc treatments. Regarding the cell cycle analysis, we did not observed any changes in cell cycle phases. In summary, cell viability was decreased and apoptosis (initial, mid and late) was increased after hCG and/or Ang-(1 - 7) peptides treatments. These results point out hCG and Ang-(1 - 7) as effective compounds to inhibit cell proliferation, since they decrease cell viability and increase apoptosis in both normal and in tumoral breast cells, being the effect more pronounced in the tumoral cell line. Our results support the idea of investigating more closely the putative use of these compounds as novel therapeutic agents for breast cancer.

Share and Cite:

S. Noronha, W. Bernardo, A. Barros, C. Nakaie, S. Shimuta, I. Silva and S. Noronha, "Effects on Cell Viability and on Apoptosis in Tumoral (MCF-7) and in Normal (MCF10A) Epithelial Breast Cells after Human Chorionic Gonadotropin and Derivated-Angiotensin Peptides Treatments," Journal of Cancer Therapy, Vol. 4 No. 7A, 2013, pp. 65-69. doi: 10.4236/jct.2013.47A010.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] “What Are the Key Statistics about Breast Cancer?” 2013. http://www.cancer.org/cancer/ breastcancer/ detailedguide/breast-cancer-key-statistics
[2] P. M. Frossard, M. J. Malloy, G. G. Lestringant and J. P. Kane, “Haplotypes of the Human Renin Gene Associated with Essential Hypertension and Stroke,” Journal of Human Hypertension, Vol. 15, No. 1, 2001, pp. 49-55. doi:10.1038/sj.jhh.1001107
[3] M. Fujita, I. Hayashi, S. Yamashina, M. Itoman and M. Majima, “Blockade of Angiotensin AT1a Receptor Signaling Reduces Tumor Growth, Angiogenesis, and Metastasis,” Biochemical and Biophysical Research Communications, Vol. 294, No. 2, 2002, pp. 441-447. doi:10.1016/S0006-291X(02)00496-5
[4] S. Greco, A. Muscella, M. G. Elia, et al., “Angiotensin II Activates Extracellular Signal Regulated Kinases via Protein Kinase C and Epidermal Growth Factor Receptor in Breast Cancer Cells,” Journal of Cellular Physiology, Vol. 196, No. 2, 2003, pp. 370-377. doi:10.1002/jcp.10313
[5] F. Deshayes and C. Nahmias, “Angiotensin Receptors: A New Role in Cancer?” Trends in Endocrinology & Metabolism, Vol. 16, No. 7, 2005, pp. 293-299. doi:10.1016/j.tem.2005.07.009
[6] E. I. Ager, J. Neo and C. Christophi, “The Rennin-AngioTensin System and Malignancy,” Carcinogenesis, Vol. 29, No. 9, 2008, pp. 1675-1684. doi:10.1093/carcin/bgn171
[7] F. Deshayes and C. Nahmias, “Angiotensin Receptors: A New Role in Cancer?” Trends in Endocrinology & Metabolism, Vol. 16, No. 7, 2005, pp. 293-299. doi:10.1016/j.tem.2005.07.009
[8] R. A. Santos, M. J. Campagnole-Santos and S. P. Andrade, “Angiotensin-(1 -7): An Update,” Regulatory Peptides, Vol. 91, No. 1-3, 2000, pp. 45-62. doi:10.1016/S0167-0115(00)00138-5
[9] I. F. Benter, D. I. Diz and C. M. Ferrari, “Pressor and Reflex Sensitivity Is Altered in Spontaneously Hypertensive Rats Treated with Angiotensin-(1 -7),” Hypertension, Vol. 26, No. 6, 1995, pp. 1138-1144. doi:10.1161/01.HYP.26.6.1138
[10] W. B. Strawn, C. M. Ferrario and E. A. Tallant, “Angiotensin (1 -7) Reduces Smooth Muscle Growth after Vascular Injury,” Hypertension, Vol. 33, No. 1, 1999, pp. 207-211. doi:10.1161/01.HYP.33.1.207
[11] E. J. Freeman, G. M. Chisolm, C. M. Ferrario and E. A. Tallant, “Angiotensin-(1 -7) Inhibits Vascular Smooth Muscle Cell Growth,” Hypertension, Vol. 28, No. 1, 1996, pp. 104-108. doi:10.1161/01.HYP.28.1.104
[12] E. A. Tallant, C. M. Ferrario and P. E. Gallagher, “Angiotensin-(1 -7) Inhibits Growth of Cardiac Myocytes through Activation of the Mas Receptor,” American Journal of Physiology—Heart and Circulatory Physiology, Vol. 289, No. 4, 2005, pp. H1560-H1566. doi:10.1152/ajpheart.00941.2004
[13] R. D. Machado, R. A. Santos and S. P. Andrade, “Opposing Actions of Angiotensins on Angiogenesis,” Life Sciences, Vol. 66, No. 1, 2000, pp. 67-76.
[14] R. A. Santos, K. B. Brosnihan, D. W. Jacobsen, P. E. DiCorletto and C. M. Ferrario, “Production of Angiotensin-(1 -7) by Human Vascular Endothelium,” Hypertension, Vol. 19, No. 2, 1992, pp. 56-61.
[15] K. Yamamoto, M. C. Chappell, K. B. Broshinan and C. M. Ferrario, “In Vivo Metabolism of Angiotensin I by Neutral Endopeptidase (EC in Spontaneously Hypertensive Rats,” Hypertension, Vol. 19, No. 6, 1992, pp. 692-696. doi:10.1161/01.HYP.19.6.692
[16] M. C. Chappell, E. A. Tallant, K. B. Brosnihan and C. M. Ferrario, “Conversion of Angiotensin I to Angiotensin-(1 -7) by Thimet Oligopeptidase (E.C. in Vascular Smooth Muscle Cells,” Journal of Vascular Medicine and Biology, Vol. 5, No. 4, 1994, pp. 129-137.
[17] S. R. Tipnis, N. M. Hooper, R. Hyde, E. Karran, G. Christie and A. J. Turner, “A Human Homolog of AngiotensinConverting Enzyme. Cloning and Functional Expression as a Captopril-Insensitive Carboxypeptidase,” The Journal of Biological Chemistry, Vol. 275, No. 43, 2000, pp. 33238-33243. doi:10.1074/jbc.M002615200
[18] M. A. Crackower, R. Sarao, G. Y. Oudit, C. Yagil, I. Kozieradzki, S. E. Scanga, et al., “Angiotensin-Converting Enzyme 2 Is an Essential Regulator of Heart Function,” Nature, Vol. 417, No. 6891, 2002, pp. 822-828. doi:10.1038/nature00786
[19] M. Donoghue, F. Hsieh, E. Baronas, K. Godbout, M. Gosselin, N. Stagliano, et al., “A Novel Angiotensin-Converting Enzyme-Related Carboxypeptidase (ACE2) Converts Angiotensin I to Angiotensin 1-9,” Circulation Research, Vol. 87, No. 5, 2000, pp. E1-E9. doi:10.1161/01.RES.87.5.e1
[20] M. C. Chappell, N. T. Pirro, A. Sykes and C. M. Ferrario, “Metabolism of Angiotensin-(1 -7) by Angiotensin-Converting Enzyme,” Hypertension, Vol. 31, No. 1, 1998, pp. 362-367. doi:10.1161/01.HYP.31.1.362
[21] K. Yamada, S. N. Iyer, M. C. Chappell, D. Ganten and C. M. Ferrario, “Converting Enzyme Determines the Plasma Clearance of Angiotensin-(1 -7),” Hypertension, Vol. 32, No. 3, 1998, pp. 496-502. doi:10.1161/01.HYP.32.3.496
[22] R. A. Santos, A. C. Simoes e Silva, C. Maric, et al., “Angiotensin-(1 -7) Is an Endogenous Ligand for the G Protein-Coupled Receptor Mas,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 100, No. 14, 2003, pp. 8258-8263. doi:10.1073/pnas.1432869100
[23] C. R. Nakaie, E. G. Silva, E. M. Cilli, R. Marchetto, S. Schreier, T. B. Paiva and A. C. Paiva, “Synthesis and Pharmacological Properties of TOAC-Labeled Angiotensin and Bradykinin Analogs,” Peptides, Vol. 23, No. 1, 2002, pp. 65-70.
[24] G. N. Jubilut, E. M. Cilli, E. Crusca, E. H. Silva, Y. Okada and C. R. Nakaie, “Comparative Investigation of the Cleavage Step in the Synthesis of Model Peptide Resins: Implications for Nalpha-9-Fluorenylmethyloxycarbonyl-Solid Phase Peptide Synthesis,” Chemical & Pharmaceutical Bulletin (Tokyo), Vol. 55, No. 3, 2007, pp. 468-470.
[25] D. E. Morbeck, P. C. Roche, H. T. Keutmann and D. J. McCormick, “A Receptor Binding Site Identified in the Region 81-95 of the Beta-Subunit of Human Luteinizing Hormone (LH) and Chorionic Gonadotropin (hCG),” Molecular and Cellular Endocrinology, Vol. 97, No. 1-2, 1993, pp. 173-181.
[26] S. M. R. Noronha, S. A. A. Correa-Noronha, I. H. Russo, R. L. di Cicco, J. Santucci-Pereira and J. Russo, “Human Chorionic Gonadotropin and a 15 Amino Acid hCG Fragment of the Hormone Induce Downregulation of the Cytokine IL-8 Receptor in Normal Breast Epithelial Cells,” Hormone Molecular Biology and Clinical Investigation, Vol. 6, No. 3, 2011, pp. 241-245.
[27] Y. Zhao, X. Chen, L. Cai, Y. Yang, G. Sui and S. Fu, “Angiotensin II/angiotensin II Type I Receptor (AT1R) Signaling Promotes MCF-7 Breast Cancer Cells Survival via PI3-Kinase/Akt Pathway,” Journal of Cellular Physiology, Vol. 225, No. 1, 2010, pp. 168-173.
[28] W. J. Petty, M. Aklilu, V. A. Varela, J. Lovato, P. D. Savage and A. A. Miller, “Reverse Translation of Phase I Biomarker Findings Links the Activity of Angiotensin-(1 -7) to Repression of Hypoxia Inducible Factor-1Alpha in Vascular Sarcomas,” BMC Cancer, Vol. 12, No. 1, 2012, p. 404.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.