Exploiting MCF-7 Cells’ Calcium Dependence with Interlaced Therapy


The purpose of this study is to demonstrate MCF-7 cells’ dependence on calcium for growth and to exploit that dependence to improve chemotherapy efficacy. Fura-2 fluorescence imaging shows that MCF-7 cells maintain a higher basal intracellular calcium concentration than non-tumorigenic MCF-10A cells. Blocking T-type calcium channels with mibefradil reduced MCF-7 intracellular calcium concentration. Flow cytometry shows that knocking down T-type calcium channel expression with siRNA caused an increase in MCF-7 cells in G1 phase and a decrease in cells in S phase. Proliferation assays of MCF-7 cells treated with EGTA and thapsigargin reveal the dependence of MCF-7 cell growth on extracellular and intracellular calcium sources, respectively. In vitro, interlaced treatment that alternated the T-type calcium channel blocker NNC-55-0396 with paclitaxel more effectively reduced MCF-7 cell number than chemotherapy alone. In a mouse in vivo model, interlaced mibefradil and paclitaxel more effectively reduced MCF-7 xenograft size than chemotherapy alone. These findings indicate that MCF-7 cells are dependent on calcium for proliferation, particularly in passing the G1/S cell cycle checkpoint. Further, this dependence on calcium can be exploited by alternating treatment with T-type calcium channel blockers with paclitaxel in an interlaced therapy scheme that increases the efficacy of the chemotherapy.

Share and Cite:

J. Pottle, C. Sun, L. Gray and M. Li, "Exploiting MCF-7 Cells’ Calcium Dependence with Interlaced Therapy," Journal of Cancer Therapy, Vol. 4 No. 7A, 2013, pp. 32-40. doi: 10.4236/jct.2013.47A006.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] H. L. Roderick and S. J. Cook, “Ca2+ Signaling Checkpoints in Cancer: Remodeling Ca2+ for Cancer Cell Proliferation and Survivial,” Nature Reviews Cancer, Vol. 8, No. 5, 2008, pp. 361-375. doi:10.1038/nrc2374
[2] D. Walker, T. Sun, S. MacNeil and R. Smallwood, “Modeling the Effect of Exogenous Calcium on Keratinocyte and HaCat Cell Proliferation and Differentiation Using and Agent-Based Computational Paradigm,” Tissue Engineering, Vol. 12, No. 8, 2006, pp. 2301-2309. doi:10.1089/ten.2006.12.2301
[3] S. Rosenberger, I. S. Thorey, S. Werner and P. Boukamp, “A Novel Regulator of Telomerase. S100A8 Mediates Differentiation-Dependent and Calcium-Induced Inhibition of Telomerase Activity in the Human Epidermal Keratinocyte Line HaCaT,” The Journal of Biological Chemistry, Vol. 282, No. 9, 2007, pp. 6126-6135. doi:10.1074/jbc.M610529200
[4] G. Legrand, S. Humez, C. Slomianny, E. Dewailly, F. Vanden Abeele, P. Mariot, F. Wuytack and N. Prevarskaya, “Ca2+ Pools and Cell Growth. Evidence for Sarcoendoplasmic Ca2+-ATPases 2B Involvement in Human Prostate Cancer Cell Growth Control,” The Journal of Biological Chemistry, Vol. 276, No. 50, 2001, pp. 47609-47614. doi:10.1074/jbc.M107011200
[5] V. Lehen’kyi, M. Flourakis, R. Skryma and N. Prevarskaya, “TRPV6 Channel Controls Prostate Cancer Cell Proliferation via Ca(2+)/NFAT-Dependent Pathways,” Oncogene, Vol. 26, No. 52, 2007, pp. 7380-7385. doi:10.1038/sj.onc.1210545
[6] J. T. Taylor, X. B. Zeng, J. E. Pottle, K. Lee, A. R. Wang, S. G. Yi, J. A. S. Scruggs, S. S. Sikka and M. Li, “Calcium Signaling and T-Type Calcium Channels in Cancer Cell Cycling,” World Journal of Gastroenterology, Vol. 14, No. 32, 2008, pp. 4984-4991. doi:10.3748/wjg.14.4984
[7] J. T. Taylor, L. Huang, J. E. Pottle, K. Liu, Y. Yang, X. Zeng, B. M. Keyser, K. C. Agrawal, J. B. Hansen and M. Li, “Selective Blockade of T-Type Ca2+ Channels Suppresses Human Breast Cancer Cell Proliferation,” Cancer Letters, Vol. 267, No. 1, 2008, pp. 116-124. doi:10.1016/j.canlet.2008.03.032
[8] F. Lu, H. Chen, C. Zhou, S. Liu, M. Guo, P. Chen, H. Zhuang, D. Xie and S. Wu, “T-Type Ca(2+) Channel Expression in Human Esophageal Carcinomas: A Functional Role in Proliferation,” Cell Calcium, Vol. 43, No. 1, 2008, pp. 49-58. doi:10.1016/j.ceca.2007.03.006
[9] G. E. Bertolesi, C. Shi, L. Elbaum, C. Jollimore, G. Rozenberg, S. Barnes and M. E. M. Kelly, “The Ca2+ Channel Antagonists Mibefradil and Pimozide Inhibit Cell Growth via Different Cytotoxic Mechanisms,” Molecular Pharmacology, Vol. 62, No. 2, 2002, pp. 210-219. doi:10.1124/mol.62.2.210
[10] A. Panner and R. D. Wurster, “T-Type Calcium Channels and Tumor Proliferation,” Cell Calcium, Vol. 40, No. 2, 2006, pp. 253-259. doi:10.1016/j.ceca.2006.04.029
[11] W. Li, S. L. Zhang, N. Wang, B. B. Zhang and M. Li, “Blockade of T-Type Ca2+ Channels Inhibits Human Ovarian Cancer Cell Proliferation,” Cancer Investigation, Vol. 29, No. 5, 2011, pp. 339-246. doi:10.3109/07357907.2011.568565
[12] A. Panner, L. L. Cribbs, G. M. Zainelli, T. C. Origitano, S. Singh and R. D. Wurster, “Variation of T-Type Calcium Channel Protein Expression Affects Cell Division of Cultured Tumor Cells,” Cell Calcium, Vol. 37, No. 2, 2005, pp. 105-119. doi:10.1016/j.ceca.2004.07.002
[13] P. Mariot, K. Vanoverberghe, N. Lalevee, M. F. Rossier and N. Prevarskaya, “Overexpression of an Alpha 1H (Cav3.2) T-Type Calcium Channel during Neuroendocrine Differentiation of Human Prostate Cancer Cells,” Journal of Biological Chemistry, Vol. 277, 2002, pp. 10824-10833. doi:10.1074/jbc.M108754200
[14] Y. Q. Wang, G. Brooks, C. B. Zhu, W. Z. Yuan, Y. Q. Li, and X. S. Wu, “Functional Analysis of the Human TType Calcium Channel Alpha 1H Subunit Gene in Cellular Proliferation,” Journal of Genetics & Genomics, Vol. 29, No. 8, 2002, pp. 659-665.
[15] J. F. Whitfield, A. L. Boynton, J. P. MacManus, R. H. Rixon, M. Sikorska, B. Tsang, P. R. Walker and S. H. Swierenga, “The Roles of Calcium and Cyclic AMP in Cell Proliferation,” Annals of the New York Academy of Sciences, Vol. 339, No. 1, 1980, pp. 216-240. doi:10.1111/j.1749-6632.1980.tb15980.x
[16] V. Crunelli, T. I. Toth, D. W. Cope, K. L. Blethyn and S. W. Hughes, “The ‘Window’ T-Type Current in Brain Dynamics of Different Behavioural States,” Journal of Physiology, Vol. 562, 2005, pp. 121-129. doi:10.1113/jphysiol.2004.076273
[17] J. F. Whitfield, “Calcium Signals and Cancer,” Critical Reviews in Oncogenesis, Vol. 3, No. 1-2, 1992, pp. 55-90.
[18] N. Dejeans, N. Tajeddine, R. Beck, J. Verrax, H. Taper, P. Gailly and P. B. Calderon, “Endoplasmic Reticulum Calcium Release Potentiates the ER Stress and Cell Death Caused by an Oxidative Stress in MCF-7 Cells,” Biochemical Pharmacology, Vol. 79, No. 9, 2010, pp. 1221-1230. doi:10.1016/j.bcp.2009.12.009
[19] C. Jackisch, H. A. Hahm, B. Tombal, D. McCloskey, K. Butash, N. E. Davidson and S. R. Denmeande, “Delayed Micromolar Elevation in Intracellular Calcium Precedes Induction of Apoptosis in Thapsigargin-treated Breast Cancer Cells,” Clinical Cancer Research, Vol. 6, 2000, pp. 2844-2850.
[20] S. Wu, M. Zhang, P. A. Vest, A. Bhattacharjee, L. Liu and M. Li, “A Mibefradil Metabolite Is a Potent Intracellular Blocker of L-Type Ca2+ Currents in Pancreatic β-Cells,” The Journal of Pharmacology and Experimental Therapeutics, Vol. 292, No. 3, 2000, pp. 939-943.

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.