Thermophysical Characterization and Crystallization Kinetics of Semi-Crystalline Polymers

Abstract

Final properties and behavior of polymer parts are known to be directly linked to the thermomechanical history experienced during their processing. Their quality depends on their structure, which is the result of the interactions between the process and the polymers in terms of thermomechanical kinetics. To study the actual behavior of a polymer during its transformation, it is necessary to take into account all the thermal dependencies of their thermophysical properties. In this paper, a complete experimental thermal characterization of a semi-crystalline polymer is performed. Thermal conductivity is measured using the hot wire method. The PVT diagram is obtained by means of an isobaric piston type dilatometer. Heat capacity is characterized versus temperature by differential scanning calorimetry (DSC). A modification of the Schneider rate crystallization equations is proposed, allowing to identify in a simple way all the crystallization kinetics parameters, using only DSC measurements. Finally, a multiphysical coupled model is built in order to numerically simulate the cooling of a polypropylene plate, as in the cooling stage of the injection molding process. Calculated evolutions of temperature, crystallinity, pressure and specific volume across the plate thickness are presented and commented.

Share and Cite:

M. Zinet, Z. Refaa, M. Boutaous, S. Xin and P. Bourgin, "Thermophysical Characterization and Crystallization Kinetics of Semi-Crystalline Polymers," Journal of Modern Physics, Vol. 4 No. 7B, 2013, pp. 28-37. doi: 10.4236/jmp.2013.47A2005.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. Sorrentino, F. De Santis and G. Titomanlio, Progress in Understanding of Polymer Crystallization, Lecture Notes in Physics, Vol. 714, 2007, pp. 329-344. doi:10.1007/3-540-47307-6_16
[2] R. Mendoza, G. Régnier, W. Seiler and J. L. Lebrun, Polymer, Vol. 44, 2003, pp. 3363-3373. doi:10.1016/S0032-3861(03)00253-2
[3] M. Zinet, R. El Otmani, M. Boutaous and P. Chantrenne, Polymer Engineering and Science, Vol. 50, 2010, pp. 2044-2059. doi:10.1002/pen.21733
[4] M. Boutaous, M. Zinet, Z. Refaa and P. Bourgin, Journal of Thermal Science and Technology, 2013, in press.
[5] H. Zuidema, G. W. M. Peters and H. E. H. Meijer, Macromolecular Theory and Simulations, Vol. 10, 2001, pp. 447-460. doi:10.1002/1521-3919(20010601)10:5<447::AID-MATS447>3.0.CO;2-C
[6] M. Avrami, Journal of Chemical Physics, Vol. 7, 1939, pp. 1103-1112. doi:10.1063/1.1750380
[7] H. Janeschitz-Kriegl, “Crystallization under Process Conditions,” In: J. A. Covas, Ed., Rheological Fundamentals of Polymer Processing, NATO ASI Series, Vol. 302, 1995, pp. 423-436. doi:10.1007/978-94-015-8571-2_19
[8] G. Vanden Poel and V. B. F. Mathot, Thermochimica Acta, Vol. 446, 2006, pp. 41-54. doi:10.1016/j.tca.2006.02.022
[9] M. Boutaous, P. Bourgin and M. Zinet, Journal of Non-Newtonian Fluid Mechanics, Vol. 165, 2010, pp. 227-237. doi:10.1016/j.jnnfm.2009.12.005
[10] H. Zuidema, G. W. M. Peters and H. E. H. Meijer, Journal of Applied Polymer Science, Vol. 82, 2001, pp. 1170-1186. doi:10.1002/app.1951
[11] W. Schneider, A. Koppl and J. Berger, International Polymer Processing, Vol. 2, 1988, pp. 151-154.
[12] H. Lobo and C. Cohen, Polymer Engineering and Science, Vol. 30, 1990, pp. 65-70. doi:10.1002/pen.760300202
[13] R. Fulchiron, E. Koscher, G. Poutot, D. Delaunay and G. Régnier, Journal of Macromolecular Science-Physics B, Vol. 40, 2001, pp. 297-314. doi:10.1081/MB-100106159
[14] P. G. Tait, Physics and Chemistry of the Voyage of H.M.S. Challenger, Vol. 2, 1888, pp. 941-951.
[15] A. N. Kolmogorov, “On the Statistical Theory of the Crystallization of Metals,” Bulletin of the Academy of Sciences of the USSR, Mathematics Series, Vol. 1, 1937, pp. 355-359.
[16] U. R. Evans, “The Laws of Expanding Circles and Spheres in Relation to the Lateral Growth of Surface Films and the Grain-Size of Metals,” Transactions of the Faraday Society, Vol. 41, 1945, pp. 365-374. doi:10.1039/tf9454100365
[17] E. Koscher and R. Fulchiron, Polymer, Vol. 43, 2002, pp. 6931-6942. doi:10.1016/S0032-3861(02)00628-6
[18] J. D. Hoffman and R. L. Miller, Polymer, Vol. 38, 1997, pp. 3151-3212. doi:10.1016/S0032-3861(97)00071-2
[19] K. Levenberg, Quarterly of Applied Mathematics, Vol. 2, 1944, pp. 164-168.
[20] D. W. Marquardt, SIAM Journal of Applied Mathematics, Vol. 11, 1963, pp. 431-441. doi:10.1137/0111030
[21] A. M. Bianchi, Y. Fautrelle and J. Etay, “Transferts Thermiques,” Presses Polytechniques et Universitaires Romandes, Lausanne, 2004, pp. 136-137.
[22] C. P. Wong and R. S. Bollampally, Journal of Applied Polymer Science, Vol. 74, 1999, pp. 3396-3403. doi:10.1002/(SICI)1097-4628(19991227)74:14<3396::AID-APP13>3.0.CO;2-3

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.