Differential effect of biotin on carboxylase activity and mice skeletal muscle metabolism


In mammalian skeletal muscle there are four carboxylases involved in several biochemical processes like gluconeogenesis, tricarboxylic acid cycle anaplerosis, metabolism of fatty acids and metabolism of various amino acids. It has been shown that biotin deficiency reduces body weight at the expense of muscular mass. When necessary, the liver uses skeletal muscle protein to provide glucose and amino acids to organs in need of such compounds. In this paper we analyzed carboxylase specific activities in hind limb skeletal muscle of 3 weeks old BALB/c male mice, at 0, 1, 4, 7, and 14 days of a specific diet with different biotin concentrations. Biotin was used at 0.0, 1.8 or 98.2 mg per kg of food; and was referred to as biotin deficient, sufficient and supplemented, respectively. Water and food supply and consumption by the three groups of mice were the same. Therefore, the observed effects were directly related to biotin ingestion. The body weight of biotin supplemented mice was the same as the body weight of mice in the biotin sufficient group, while biotin deficiency caused body weight reduction after 7 days of biotin depletion. We found that the total protein concentration in the vastus lateralis muscle is associated with the biotin content in the diet. After 7 days, the muscle total protein content was lower in mice of the biotin deficient group while it was higher in the mice from the biotin supplemented group (P < 0.001). Of the four analyzed enzymes, only pyruvate carboxylase specific activity was reduced in both cases: by consuming the supplemented diet and by the lack of this vitamin. Our data show that PC and muscle metabolism are differentially altered by both, biotin excess and biotin deficiency. The mechanisms of these effects are currently under investigation.

Share and Cite:

Oca, M. , Gutiérrez-Ospina, G. , Salcedo, P. , Fuentes-Farías, A. , Meléndez-Herrera, E. , Gómez-Chavarín, M. and Báez-Saldaña, A. (2013) Differential effect of biotin on carboxylase activity and mice skeletal muscle metabolism. Advances in Bioscience and Biotechnology, 4, 43-50. doi: 10.4236/abb.2013.47A2006.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Friedrich, W. (1988) Vitamins. Walter de Gruyter.
[2] Wolf, B. (1995) Disorders in biotin metabolism. In: de Beaudet, A.L., Sly, W.S., Valle, D. and Scriver, C.R., Eds., The Metabolic and Molecular Bases of Inherited Disease. McGraw Hill, New York, 3151-3177.
[3] Bianchi, A., Evans, J.L., Iverson, A.J., Norlund, A.C., Watts, T.D. and Witters, L.A. (1990) Identification of an isozymic form of acetyl-CoA carboxylase. The Journal of Biological Chemistry, 25, 1502-1509.
[4] Abu-Elheiga, L., Almarza-Ortega, D.B., Baldini, A. and Wakil, S.J. (1997) Human acetyl-CoA carboxylase 2. The Journal of Biological Chemistry, 272, 10669-10677.
[5] Abu-Elheiga, L., Brinkley, W.R., Zhong, L., Chirala, S.S., Woldegiorgis, G. and Wakil, S.J (2000). The subcellular localization of acetyl-CoA carboxylase 2. Proceedings of the National Academy of Sciences, 97, 1444-1449. doi:10.1073/pnas.97.4.1444
[6] Power G.W. and Newsholme E.A. (1997) Dietary fatty acids influence the activity and metabolic control of mitochondrial carnitine palmitoyltransferase I in rat heart and skeletal muscle. Journal of Nutrition, 127, 21422150.
[7] Baumgartner, M.R., Almashanu, S., Sourmala, T., Obie, C., Cole, R.N., Packman, S., Baumgartner, E.R. and Valle, D. (2001). The molecular basis of human 3-methyl-crotonyl-CoA carboxylase deficiency. Journal of Clinical Investigation, 107, 495-504. doi:10.1172/JCI11948
[8] Browner, M.F., Taroni, F., Sztul, E. and Rosenberg, L.E. (1989) Sequence analysis, biogenesis and mitochondrial import of the alpha-subunit of rat liver propionyl CoA carboxylase. The Journal of Biological Chemistry, 284, 12680-12685.
[9] Utter, M.F. and Keech, D.B. (1963) Pyruvate carboxylase I Nature of the reaction. The Journal of Biological Chemistry, 238, 2603-2608.
[10] Jitrapakdee, S., Vidal-Puig, A. and Wallace, J.C. (2005) Anaplerotic roles of pyruvate carboxylase in mammalian tissues (Review). Cellular and Molecular Life Science, 63, 843-854. doi:10.1007/s00018-005-5410-y
[11] Hernández, R.M. (2001) Alimentación infantil. Díaz de Santos, Espana
[12] Ortega Anta, R.M. and Requejo Marcos, A.M. (2003) Nutriguía: Manual de nutrición clínica en atención primaria. Complutense.
[13] Báez-Saldana, A., Díaz, G., Espinoza, B. and Ortega, E. (1998) Biotin deficiency induces changes in subpopulations of spleen lymphocytes in mice. American Journal of Clinical Nutrition, 67, 431-437.
[14] Green, N.M. (1975) Avidin. Advances in protein chemistry, 29, 85-133. doi:10.1016/S0065-3233(08)60411-8
[15] Melo Ruíz, V. and Cuamatzi, O. (2007) Bioquímica de los procesos metabólicos. 2nd Edition, Reverte.
[16] Rasmussen, B.B. and Winder, W.W. (1997) Effect of exercise intensity on skeletal muscle malonyl-CoA and acetyl-CoA carboxylase. Journal of Applied Physiology, 83, 1104-1109.
[17] Vavvas, D., Apazidis, A., Saha, A.K., Gamble, J., Patel, A., Kemp, B.E., Witters, L.A. and Ruderman, N.B. (1997) Contraction-induced changes in acetyl CoA carboxylase and 5’-AMP-activated kinase in skeletal muscle. Journal of Biological Chemistry, 272, 13255-13261. doi:10.1074/jbc.272.20.13255
[18] Dean, D., Daugaard, J.R., Young, M.E., Saha, A., Vavvas, D., Asp, S., Kiens, B., Kim, K., Witters, L., Richter, E.A. and Ruderman, N. (2000) Exersice diminishes the activity of acetyl CoA carboxylase in human muscle. Diabetes, 49, 1295-1300. doi:10.2337/diabetes.49.8.1295
[19] Báez-Saldana, A., Gutierrez-Ospina, G., Chimal-Monroy, J., Fernández-Mejía, C. and Saavedra, R. (2009) Biotin deficiency in mice is associated with decreased serum availability of insulin-like growth factor-I. European Journal of Nutrition, 48, 137-144. doi:10.1007/s00394-009-0773-8
[20] Styer, L. (1995) Bioquímica. 4th Edition, Reverte.
[21] Báez-Saldana, A. and Ortega, E. (2004) Biotin deficiency blocks thymocyte maturation, accelerates thymus involution, and decreases nose-rump length in mice. Journal of Nutrition, 134, 1970-1977.
[22] Walker, W.F. and Homberger, D.G. (1997) Anatomy and dissection of the rat. W. H. Freeman & Company.
[23] Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Analytical Biochemistry, 72, 248-254. doi:10.1016/0003-2697(76)90527-3
[24] Báez-Saldana, A., Camacho-Arroyo, I., Espinosa-Aguirre, J.J., Neri-Gómez, T., Rojas-Ochoa, A., Guerra-Araiza, C., Larrieta, E., Vital, P., Díaz, G., Chavira, R. and Fernández-Mejía, C. (2009) Biotin deficiency and biotin excess: Effects on the female reproductive system. Steroids, 79, 863-869.
[25] Davis, E.J., Spydevold, O. and Bremer, J. (1980) Pyruvate carboxylase and propionyl CoA carboxylase as anaplerotic enzymes in skeletal muscle mitochondria. European Journal of Biochemistry, 110, 225-262. doi:10.1111/j.1432-1033.1980.tb04863.x
[26] Salter, R.B. (2000) Trastornos y lesionesdelsistemamúsculoesquelético: Introducción a la ortopedia, fracturas y lesionesarticulares, reumatología, osteopatía metabólica y rehabilitación. Elsevier.
[27] Drummond, J.M., Dreyer, H.C., Fry, C.S., Glynn, E.L. and Rasmussen, B.B. (2009) Nutritional and contractile regulation of human skeletal muscle protein synthesis and mTORC1 signaling. Journal of Applied Physiology, 106, 1374-1384. doi:10.1152/japplphysiol.91397.2008
[28] Castle, J.C., Hara, Y., Raymond, C.K., Garrett-Engele, P., Ohwaki, K., Kan, Z., Kusunoki, J. and Johnson, J.M. (2009) ACC2 is expressed at high levels in human white adipose and has an isoform with a novel N-terminus [corrected]. PLoS One, 4, e4369. doi:10.1371/journal.pone.0004369
[29] Koolman, J. (2005) Bioquímica: Texto y atlas. 3rd Edition, Médica Panamericana.
[30] Hong, S.C. and Layman, D.K. (1984) Effects of leucine on in vitro protein synthesis and degradation in rat muscles. Journal of Nutrition, 114, 1204-1212.
[31] Nair, K.S., Schwartz, R.G. and Welle S. (1992) Leucine as a regulator of whole body and skeletal muscle protein metabolism in humans. American Journal of Physiology, 263, E928-E934
[32] Anthony, J.C., Lang, C.H., Crozier, S.J., Anthony ,T.G., MacLean, D.A., Kimball, S.R. and Jefferson, L.S. (2002) Contribution of insulin to the translational control of protein synthesisin skeletal muscle by leucine. Endocrinology and Metabolism: American Journal of Physiology, 282, E1092-E1101.
[33] Norton, L.E. and Layman, D.K. (2006) Leucine regulates translation initiation of protein synthesis in skeletal muscle after exercise. Journal of Nutrition, 136, 533S-537S.
[34] Oddesey, R. and Goldberg, A.I. (1972) Oxidation of leucine by rat skeletal muscle. American Journal of Physiology, 223, 1376-1383.
[35] Hutson, S.M., Cree, T.C. and Harper, A.E. (1978) Regulation of leucine and a-ketoisocaproate metabolism in skeletal muscle. Journal of Biological Chemistry, 253, 8126-8133
[36] Romero-Navarro, G., et al. (1999) Biotin regulation of pancreatic glucokinase and insulin in primary cultured rat islets and in biotin-deficient rats. Endocrinology, 140, 4595-4600. doi:10.1210/en.140.10.4595
[37] Sone, H., Ito, M., Sugiyama, K., Ohneda, M., Maebashi, M. and Furukawa, Y. (1999) Biotin enhances glucosestimulated insulin secretion in the isolated perfused pancreas of the rat. The Journal of Nutritional Biochemistry, 10, 237-243. doi:10.1016/S0955-2863(99)00003-0
[38] Sone, H., Ito, M., Shimizu, M., Sasaki, Y., Komai, M. and Furukawa, Y. (2000) Characteristics of the biotin enhancement of glucose-induced insulin release in pancreatic islets of the rat. Bioscience, Biotechnology, and Biochemistry, 64, 550-554.
[39] Coolican, S.A., Samuel, D.S., Ewton, D.Z., McWade, F.J. and Florini, J.R. (1997) The mitogenic and myogenic actions of insulin-like growth factors utilize distinct signaling pathways. The Journal of Biological Chemistry, 272, 6653-6662. doi:10.1074/jbc.272.10.6653
[40] Fernandez-Mejia, C. (2005) Pharmacological effects of biotin. The Journal of Nutritional Biochemistry, 16, 424-427. doi:10.1016/j.jnutbio.2005.03.018
[41] Aguilera-Méndez, A. and Fernández-Mejía, C. (2012) The hypotriglyceridemic effect of biotin supplementation involves increased levels of cGMP and AMPK activation. Biofactors, 38, 387-94. doi:10.1002/biof.1034
[42] Revilla-Monsalve, C., Zendejas-Ruiz, I., Islas-Andrade, S., Báez-Saldana, A., Palomino-Garibay, M.A., Hernández-Quiróz, P.M. and Fernandez-Mejia, C. (2006) Biotin supplementation reduces plasma triacylglycerol and VLDL in type 2 diabetic patients and in nondiabetic subjects with hypertriglyceridemia. Biomedicine & Pharmacotherapy, 60, 182-185.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.