12/15-Lipoxygenase inhibition counteracts MAPK phosphorylation in mouse and cell culture models of diabetic peripheral neuropathy

DOI: 10.4236/jdm.2013.33015   PDF   HTML     3,255 Downloads   5,249 Views   Citations

Abstract

Background: Increased mitogen-activated protein kinase (MAPK) phosphorylation has been detected in peripheral nerve of human subjects and animal models with diabetes as well as high-glucose exposed human Schwann cells, and have been implicated in diabetic peripheral neuropathy. In our recent studies, leukocytetype 12/15-lipoxygenase inhibition or gene deficiency alleviated large and small nerve fiber dysfunction, but not intraepidermal nerve fiber loss in streptozotocin-diabetic mice. Methods: To address a mechanism we evaluated the potential for pharmacological 12/15-lipoxygenase inhibition to counteract excessive MAPK phosphorylation in mouse and cell culture models of diabetic neuropathy. C57Bl6/J mice were made diabetic with streptozotocin and maintained with or without the 12/15-lipoxygenase inhibitor cinnamyl-3,4-dihydroxy-α-cyanocinnamate (CDC). Human Schwann cells were cultured in5.5 mMor30 mMglucose with or without CDC. Results: 12(S) HETE concentrations (ELISA), as well as 12/15-lipoxygenase expression and p38 MAPK, ERK, and SAPK/JNK phosphorylation (all by Western blot analysis) were increased in the peripheral nerve and spinal cord of diabetic mice as well as in high glucose-exposed human Schwann cells. CDC counteracted diabetes-induced increase in 12(S)HETE concentrations (a measure of 12/15-lipoxygenase activity), but not 12/15-lipoxygenase overexpression, in sciatic nerve and spinal cord. The inhibitor blunted excessive p38 MAPK and ERK, but not SAPK/ JNK, phosphorylation in sciatic nerve and high glucose exposed human Schwann cells, but did not affect MAPK, ERK, and SAPK/JNK phosphorylation in spinal cord. Conclusion: 12/15-lipoxygenase inhibition counteracts diabetes related MAPK phosphorylation in mouse and cell culture models of diabetic neuropathy and implies that 12/15-lipoxygenase inhibitors may be an effective treatment for diabetic peripheral neuropathy.

Share and Cite:

Stavniichuk, R. , Obrosov, A. , Drel, V. , Nadler, J. , Obrosova, I. and Yorek, M. (2013) 12/15-Lipoxygenase inhibition counteracts MAPK phosphorylation in mouse and cell culture models of diabetic peripheral neuropathy. Journal of Diabetes Mellitus, 3, 101-110. doi: 10.4236/jdm.2013.33015.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Boulton, A.J., Vinik, A.I., Arezzo, J.C., Bril, V., Feldman, E.L., Freeman, R., et al. (2005) Diabetic neuropathies: A statement by the American Diabetes Association. Diabetes Care, 28, 956-962. doi:10.2337/diacare.28.4.956
[2] Sinnreich, M., Taylor, B.V. and Dyck, P.J. (2005) Diabetic neuropathies. Classification, clinical features, and pathophysiological basis. Neurologist, 11, 63-79. doi:10.1097/01.nrl.0000156314.24508.ed
[3] Veves, A., Backonja, M. and Malik, R.A. (2008) Painful diabetic neuropathy: Epidemiology, natural history, early diagnosis, and treatment options. Pain Medicine, 9, 660-674. doi:10.1111/j.1526-4637.2007.00347.x
[4] Tesfaye, S., Boulton, A.J., Dyck, P.J., Freeman, R., Horowitz, M., Kempler, P., et al. (2010) Diabetic neuropathies: Update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care, 33, 2285-2293. doi:10.2337/dc10-1303
[5] Yagihashi, S., Yamagishi, S.I., Wada, R.R., Baba, M., Hohman, T.C., Yabe-Nishimura, C., et al. (2001) Neuropathy in diabetic mice overexpressing human aldose reductase and effects of aldose reductase inhibitor. Brain, 124, 2448-2458. doi:10.1093/brain/124.12.2448
[6] Obrosova, I.G., Van Huysen, C., Fathallah, L., Cao, X.C., Greene, D.A. and Stevens, M.J. (2002) An aldose reductase inhibitor reverses early diabetes-induced changes in peripheral nerve function, metabolism, and antioxidative defense. The FASEB Journal, 16, 123-125.
[7] Ho, E.C., Lam, K.S., Chen, Y.S. and Yip, J.C., Arvindakshan, M., Yamagishi, S., et al. (2006) Aldose reductasedeficient mice are protected from delayed motor nerve conduction velocity, increased c-Jun NH2-terminal kinase activation, depletion of reduced glutathione, increased superoxide accumulation, and DNA damage. Diabetes, 55, 1946-1953. doi:10.2337/db05-1497
[8] Jack, M.M., Ryals, J.M. and Wright, D.E. (2011) Characterization of glyoxalase I in a streptozocin-induced mouse model of diabetes with painful and insensate neuropathy. Diabetologia, 54, 2174-2182. doi:10.1007/s00125-011-2196-3
[9] Bierhaus, A., Fleming, T., Stoyanov, S., Leffler, A., Babes, A., Neacsu, C., et al. (2012) Methylglyoxal modification of Na(v)1.8 facilitates nociceptive neuron firing and causes hyperalgesia in diabetic neuropathy. Nature Medicine, 18, 926-933. doi:10.1038/nm.2750
[10] Bierhaus, A., Haslbeck, K.M., Humpert, P.M., Liliensiek, B., Dehmer, T., Morcos, M., et al. (2004) Loss of pain perception in diabetes is dependent on a receptor of the immunoglobulin superfamily. Journal Clinical Investigation, 114, 1741-1751.
[11] Cameron, N.E., Gibson, T.M., Nangle, M.R. and Cotter, M.A. (2005) Inhibitors of advanced glycation end product formation and neurovascular dysfunction in experimental diabetes. Annuals New York Academy Science, 1043, 784-792. doi:10.1196/annals.1333.091
[12] Nagamatsu, M., Nickander, K.K., Schmelzer, J.D., Raya, A., Wittrock, D.A., Tritschler, H., et al. (1995) Lipoic acid improves nerve blood flow, reduces oxidative stress, and improves distal nerve conduction in experimental diabetic neuropathy. Diabetes Care, 18, 1160-1167. doi:10.2337/dia care.18.8.1160
[13] Cameron, N.E., Tuck, Z., McCabe, L. and Cotter, M.A. (2001) Effect of the hydroxyl radical scavenger, dimethylthiourea, on peripheral nerve tissue perfusion, conduction velocity and nociception in experimental diabetes. Diabetologia, 44, 1161-1169. doi:10.1007/s001250100626
[14] Coppey, L.J., Gellett, J.S., Davidson, E.P., Dunlap, J.A., Lund, D.D. and Yorek, M.A. (2001) Effect of antioxidant treatment of streptozotocin-induced diabetic rats on endoneurial blood flow, motor nerve conduction velocity, and vascular reactivity of epineurial arterioles of the sciatic nerve. Diabetes, 50, 1927-1937. doi:10.2337/diabetes.50.8.1927
[15] Obrosova, I.G., Mabley, J.G., Zsengellér, Z., Charniauskaya, T., Abatan, O.I., Groves, J.T., et al. (2005) Role for nitrosative stress in diabetic neuropathy: Evidence from studies with a peroxynitrite decomposition catalyst. FASEB Journal, 19, 401-403.
[16] Lupachyk, S., Shevalye, H., Maksimchyk, Y., Drel, V.R. and Obrosova, I.G. (2011) PARP inhibition alleviates diabetes-induced systemic oxidative stress and neural tissue 4-hydroxynonenal adduct accumulation: Correlation with peripheral nerve function. Free Radical Biology Medicine, 50, 1400-1409. doi:10.1016/j.freeradbiomed.2011.01.037
[17] Goss, J.R., Goins, W.F., Lacomis, D., Mata, M., Glorioso, J.C. and Fink, D.J. (2002) Herpes simplex-mediated gene transfer of nerve growth factor protects against peripheral neuropathy in streptozotocin-induced diabetes in the mouse. Diabetes, 51, 2227-2232. doi:10.2337/diab etes.51.7.2227
[18] Bianchi, R., Buyukakilli, B., Brines, M., Savino, C., Cavaletti, G., Oggioni, N., et al. (2004) Erythropoietin both protects from and reverses experimental diabetic neuropathy. Proceedings National Academy Science, 101, 823-828. doi:10.1073/pnas.0307823100
[19] Nakamura, J., Kato, K., Hamada, Y., Nakayama, M., Chaya, S., Nakashima, E., et al. (1999) A protein kinase C-betaselective inhibitor ameliorates neural dysfunction in streptozotocin-induced diabetic rats. Diabetes, 48, 2090-2095. doi:10.2337/diabetes.48.10.2090
[20] Cameron, N.E., Cotter, M.A., Jack, A.M., Basso, M.D. and Hohman, T.C. (1999) Protein kinase C effects on nerve function, perfusion, Na(+), K(+)-ATPase activity and glutathione content in diabetic rats. Diabetologia, 42, 1120-1130. doi:10.1007/s001250051280
[21] Li, F., Drel, V.R., Szabó, C., Stevens, M.J. and Obrosova, I.G. (2005) Low-dose poly(ADP-ribose) polymerase inhibitor-containing combination therapies reverse early peripheral diabetic neuropathy. Diabetes, 54, 1514-1522. doi:10.2337/diabetes.54.5.1514
[22] Obrosova, I.G., Xu, W., Lyzogubov, V.V., Ilnytska, O., Mashtalir, N., Vareniuk, I., et al. (2008) PARP inhibition or gene deficiency counteracts intraepidermal nerve fiber loss and neuropathic pain in advanced diabetic neuropathy. Free Radical Biology Medicine, 44, 972-981. doi:10.1016/j.freeradbiomed.2007.09.013
[23] Kellogg, A.P., Wiggin, T.D., Larkin, D.D., Hayes, J.M., Stevens, M.J. and Pop-Busui, R. (2007) Protective effects of cyclooxygenase-2 gene inactivation against peripheral nerve dysfunction and intraepidermal nerve fiber loss in experimental diabetes. Diabetes, 56, 2997-3005. doi:10.2337/db07-0740
[24] Stavniichuk, R., Drel, V.R., Shevalye, H., Vareniuk, I., Stevens, M.J., Nadler, J.L., et al. (2010) Role of 12/15-lipoxygenase in nitrosative stress and peripheral prediabetic and diabetic neuropathies. Free Radical Biology Medicine, 49, 1036-1045. doi:10.1016/j.freeradbiomed.2010.06.016
[25] Obrosova, I.G., Stavniichuk, R., Drel, V.R., Shevalye, H., Vareniuk, I., Nadler, J.L., et al. (2010) Different roles of 12/15-lipoxygenase in diabetic large and small fiber peripheral and autonomic neuropathies. American Journal Pathology, 177, 1436-1447. doi:10.2353/ajpath.2010.100178
[26] Purves, T., Middlemas, A., Agthong, S., Jude, E.B., Boulton, A.J., Fernyhough, P., et al. (2001) A role for mitogen-activated protein kinases in the etiology of diabetic neuropathy. FASEB Journal, 15, 2508-2514. doi:10.1096/fj.01-0253hyp
[27] Price, S.A., Agthong, S., Middlemas, A.B. and Tomlinson, D.R. (2004) Mitogen-activated protein kinase p38 mediates reduced nerve conduction velocity in experimental diabetic neuropathy: Interactions with aldose reductase. Diabetes, 53, 1851-1856. doi:10.2337/diabetes.53.7.1851
[28] Cheng, H.T., Dauch, J.R., Oh, S.S., Hayes, J.M., Hong, Y. and Feldman, E.L. (2010) p38 mediates mechanical allodynia in a mouse model of type 2 diabetes. Molecular Pain, 19, 6-28.
[29] Stavniichuk, R., Drel, V.R., Shevalye, H., Maksimchyk, Y., Kuchmerovska, T.M., Nadler, J.L., et al. (2011) Baicalein alleviates diabetic peripheral neuropathy through inhibition of oxidative-nitrosative stress and p38 MAPK activation. Experimental Neurology, 230, 106-113. doi:10.1016/j.expn eurol.2011.04.002
[30] Drel, V.R., Pacher, P., Stavniichuk, R., Xu, W., Zhang, J., Kuchmerovska, T.M., et al. (2011) Poly(ADP-ribose)polymerase inhibition counteracts renal hypertrophy and multiple manifestations of peripheral neuropathy in diabetic Akita mice. International Journal Molecular Medicine, 28, 629-635.
[31] Stavniichuk, R., Shevalye, H., Hirooka, H., Nadler, J.L. and Obrosova, I.G. (2012) Interplay of sorbitol pathway of glucose metabolism, 12/15-lipoxygenase, and mitogen-activated protein kinases in the pathogenesis of diabetic peripheral neuropathy. Biochemical Pharmacology, 83, 932-940. doi:10.1016/j.bcp.2012.01.015
[32] Askwith, T., Zeng, W., Eggo, M.C. and Stevens, M.J. (2012) Taurine reduces nitrosative stress and nitric oxide synthase expression in high glucose-exposed human Schwann cells. Experimental Neurology, 233, 154-162. doi:10.1016/j.expneurol.2011.09.010
[33] Roberts, P.J. and Der, C.J. (2007) Targeting the RafMEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene, 26, 3291-3310. doi:10.1038/sj.onc.1210422
[34] Lehmann, H.C. and Hoke, A. (2010) Schwann cells as a therapeutic target for peripheral neuropathies. CNS Neurology Disorders Drug Targets, 9, 801-816. doi:10.2174/187152 710793237412
[35] Lehmann, H.C., Chen, W., Mi, R., Wang, S., Liu, Y., Rao, M., et al. (2012) Human Schwann cells retain essential phenotype characteristics after immortalization. Stem Cells Development, 21, 423-431. doi:10.1089/scd.2010.0513
[36] Obrosova, I.G., Drel, V.R., Pacher, P., Ilnytska, O., Wang, Z.Q., Stevens, M.J., et al. (2005) Oxidative-nitrosative stress and poly(ADP-ribose) polymerase (PARP) activition in experimental diabetic neuropathy: The relation is revisited. Diabetes, 54, 3435-3441. doi:10.2337/diabetes.54.12.3435
[37] Stevens, M.J., Li, F., Drel, V.R., Abatan, O.I., Kim, H., Burnett, D., et al. (2007) Nicotinamide reverses neurological and neurovascular deficits in streptozotocin diabetic rats. The Journal of Pharmacology and Experimental Therapeutics, 320, 458-464. doi:10.1124/jpet.106.109702
[38] Askwith, T., Zeng, W., Eggo, M.C. and Stevens, M.J. (2009) Oxidative stress and dysregulation of the taurine transporter in high-glucose-exposed human Schwann cells: Implications for pathogenesis of diabetic neuropathy. American Journal of Physiology Endocrinology and Metabolism, 297, 620-628. doi:10.1152/ajpendo.00287.2009
[39] Pop-Busui, R., Marinescu, V., Van Huysen, C., Li, F., Sullivan, K., Greene, D.A., et al. (2002) Dissection of metabolic, vascular, and nerve conduction interrelationships in experimental diabetic neuropathy by cyclooxygenase inhibition and acetyl-L-carnitine administration. Diabetes, 51, 2619-2628. doi:10.2337/diabetes.51.8.2619
[40] Kellogg, A.P., Converso, K., Wiggin, T., Stevens, M. and Pop-Busui, R. (2009) Effects of cyclooxygenase-2 gene inactivation on cardiac autonomic and left ventricular function in experimental diabetes. American Journal of Physiology Heart and Circulation Physiology, 296, 453-461. doi:10.1152/ajpheart.00678.2008
[41] Reddy, M.A., Thimmalapura, P.R., Lanting, L., Nadler, J.L., Fatima, S. and Natarajan, R. (2002) The oxidized lipid and lipoxygenase product 12(S)-hydroxyeicosa-tetraenoic acid induces hypertrophy and fibronectin transcription in vascular smooth muscle cells via p38 MAPK and cAMP response element-binding protein activation. Mediation of angiotensin II effects. Journal of Biological Chemistry, 277, 9920-9928. doi:10.1074/jbc.M111305200
[42] Dwarakanath, R.S., Sahar, S., Reddy, M.A., Castanotto, D., Rossi, J.J. and Natarajan, R. (2004) Regulation of monocyte chemoattractant protein-1 by the oxidized lipid, 13-hydroperoxyoctadecadienoic acid, in vascular smooth muscle cells via nuclear factor-kappa B (NF-kappa B). Journal of Molecular and Cell Cardiology, 36, 585-595. doi:10.1016/j.yjmcc.2004.02.007
[43] Reilly, K.B., Srinivasan, S., Hatley, M.E., Patricia, M.K., Lannigan, J., Bolick, D.T., et al. (2004) 12/15-Lipoxygenase activity mediates inflammatory monocyte/endothelial interactions and atherosclerosis in vivo. The Journal of Biological Chemistry, 279, 9440-9450. doi:10.1074/jbc.M303857200
[44] Dwarakanath, R.S., Sahar, S., Lanting, L., Wang, N., Stemerman, M.B., Natarajan, R., et al. (2008) Viral vector-mediated 12/15-lipoxygenase overexpression in vascular smooth muscle cells enhances inflammatory gene expression and migration. Journal of Vascular Research, 45, 132-142. doi:10.1159/000109966
[45] Reddy, M.A., Sahar, S., Villeneuve, L.M., Lanting, L. and Natarajan, R. (2009) Role of src tyrosine kinase in the atherogenic effects of the 12/15-lipoxygenase pathway in vascular smooth muscle cells. Arteriosclerosis, Thrombosis and Vascular Biology, 29, 387-393. doi:10.1161/ATVB AHA.108.179150
[46] Kim, Y.S., Reddy, M.A., Lanting, L., Adler, S.G. and Natarajan, R. (2003) Differential behavior of mesangial cells derived from 12/15-lipoxygenase knockout mice relative to control mice. Kidney International, 64, 1702-1714. doi:10.1046/j.1523-1755.2003.00286.x
[47] Nangle, M.R., Cotter, M.A. and Cameron, N.E. (2006) Correction of nitrergic neurovascular dysfunction in diabetic mouse corpus cavernosum by p38 mitogen-activated protein kinase inhibition. International Journal of Impotence Research, 18, 258-263. doi:10.1038/sj.ijir.3901414
[48] Daulhac, L., Mallet, C., Courteix, C., Etienne, M., Duroux, E., Privat, A.M., et al. (2006) Diabetes-induced mechanical hyperalgesia involves spinal mitogen-activated protein kinase activation in neurons and microglia via N-methyl-D-aspartate-dependent mechanisms. Molecular Pharmacology, 70, 1246-1254. doi:10.1124/mol.106.025478
[49] Du, Y., Tang, J., Li, G., Berti-Mattera, L., Lee, C.A., Bartkowski, D., et al. (2010) Effects of p38 MAPK inhibition on early stages of diabetic retinopathy and sensory nerve function. Investigative Ophthalmology & Visual Science, 51, 2158-2164. doi:10.1167/iovs.09-3674
[50] Daulhac, L., Maffre, V., Mallet, C., Etienne, M., Privat, A.M., Kowalski-Chauvel, A., et al. (2011) Phosphorylation of spinal N-methyl-d-aspartate receptor NR1 subunits by extracellular signal-regulated kinase in dorsal horn neurons and microglia contributes to diabetes-induced painful neuropathy. European Journal of Pain, 15, 169.e1-169.e12.
[51] Tsuda, M., Ueno, H., Kataoka, A., Tozaki-Saitoh, H. and Inoue, K. (2008) Activation of dorsal horn microglia contributes to diabetes-induced tactile allodynia via extracellular signal-regulated protein kinase signaling. Glia, 56, 378-386. doi:10.1002/glia.20623
[52] Price, S.A., Gardiner, N.J., Duran-Jimenez, B., Zeef, L.A., Obrosova, I.G. and Tomlinson, D.R. (2006) Thioredoxin interacting protein is increased in sensory neurons in experimental diabetes. Brain Research, 1116, 206-214. doi:10.1016/j.brainres.2006.07.109
[53] Bürger, F., Krieg, P., Marks, F. and Fürstenberger, G. (2000) Positionaland stereo-selectivity of fatty acid oxygenation catalysed by mouse (12S)-lipoxygenase iso-enzymes. Biochemical Journal, 348, 329-335. doi:10.1042/0264-6021:3480329
[54] Gong, Y.Z., Ding, W.G., Wu, J., Tsuji, K., Horie, M. and Matsuura, H. (2008) Cinnamyl-3,4-dihydroxy-alpha cyanocinnamate and nordihydroguaiaretic acid inhibit human Kv1.5 currents independently of lipoxygenase. European Journal of Pharmacology, 600, 18-25. doi:10.1016/j.ejphar.2008.10.010
[55] Pergola, C., Jazzar, B., Rossi, A., Buehring, U., Luderer, S., Dehm, F., et al. (2011) Cinnamyl-3,4-dihydroxy-αcyanocinnamate is a potent inhibitor of 5-lipoxygenase. Journal of Pharmacology and Experimental Therapeutics, 338, 205-213. doi:10.1124/jpet.111.180794
[56] Wen, Y., Scott, S., Liu, Y., Gonzales, N. and Nadler, J.L. (1997) Evidence that angiotensin II and lipoxygenase products activate c-Jun NH2-terminal kinase. Circulation Research, 81, 651-655.doi:10.1161/01.RES.81.5.651

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.