Behavioural Responses of Crangon crangon (Crustacea, Decapoda) to Reduced Seawater pH Following Simulated Leakage from Sub-Sea Geological Storage

DOI: 10.4236/jep.2013.47A008   PDF   HTML   XML   3,458 Downloads   4,824 Views   Citations


Carbon capture and storage (CCS) in sub-sea geological formations is being developed and promoted to mitigate CO2 discharges to the atmosphere from point sources such as power stations. There remain some questions on the risks associated with the possible loss of gas from storage and the environmental harm this could pose to marine organisms associated with the sea bed in these regions. This study investigated the effect of exposing the common shrimp (Crangon crangon) to reduced pH conditions and presents the results of stepwise pH-reductions (0.2 pH units from pH 7 down to pH 6). Behaviour was monitored continuously throughout 8 hours of exposure. In three subsequent experiments we could show a consistent and repeatable behavioural response pattern consisting of immediate avoidance reactions expressed as “shooting behaviour” following each pH-reduction every hour. The animals responded in a rapid manner to the shifts at all pH values, suggesting that these animals are sensitive to even relatively small changes. The results indicate that repeated acute pH-stress caused by CO2-leakage from carbon storage sites might affect the behaviour and subsequent fitness of natural populations of common shrimps. Changes in behaviour are likely to lead to increased predation on these animals and migration away from affected areas.

Share and Cite:

G. Almut and S. Bamber, "Behavioural Responses of Crangon crangon (Crustacea, Decapoda) to Reduced Seawater pH Following Simulated Leakage from Sub-Sea Geological Storage," Journal of Environmental Protection, Vol. 4 No. 7A, 2013, pp. 61-67. doi: 10.4236/jep.2013.47A008.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] R. Arts, “What Does CO2 Geological Storage Really Mean?” CO2 GeoNet European Network of Excellence, 2008, 19 p.
[2] J. Schmitt, R. Schneider, J. Elsig, D. Leuenberger, A. Lourantou, J. Chappellaz, P. Kohler, J. Fortunat, T. F. Stocker, M. Leuenberger and H. Fischer, “Carbon Isotope Constraints on the Deglacial CO2 Rise from Ice Cores,” Science Express, Vol. 336, No. 6082, 2012, pp. 711-714. doi:10.1126/science.1217161
[3] Ocean Acificiation Reference User Group, “Ocean Acidification. The Facts. A Special Introductory Guide for Policy Advisers and Decision Makers,” In: D. A. Laffoley and J. M. Baxter, Eds., EU Project on Ocean Acidification (EPOCA), 2009, 12 p.
[4] M. Cigliano, M. C. Gambi, R. Rodolfo-Metalpa, F. P. Patti and J. M. Hall-Spencer, “Effects of Ocean Acidification on Invertebrate Settlement at Volcanic CO2 Vents,” Marine Biology, Vol. 157, No. 11, 2010, pp. 2489-2502. doi:10.1007/s00227-010-1513-6
[5] R. N. Crim, J. M. Sunday and C. D. G. Harley, “Elevated Seawater CO2 Concentrations Impair Larval Development and Reduce Larval Survival in Endangered Northern Abalone (Haliotis kamtschatkana),” Journal of Experimental Marine Biology and Ecology, Vol. 400, No. 1-2, 2011, pp. 272-277. doi:10.1016/j.jembe.2011.02.002
[6] J. Thomson and F. Melzner, “Moderate Seawater Acidification Does Not Elicit Long-Term Metabolic Depression in the Blue Mussel Mytilus edulis”, Marine Biology, Vol. 157, No. 12, 2010, pp. 2667-2676. doi:10.1007/s00227-010-1527-0
[7] R. P. Ellis, H. Parry, J. I. Spicer, T. H. Hutchinson, R. K. Pipe and S. Widdicombe, “Immunological Function in Marine Invertebrates: Responses to Environmental Perturbation,” Fish & Shellfish Immunology, Vol. 30, No. 6, 2011, pp. 1209-1222. doi:10.1016/j.fsi.2011.03.017
[8] R. Bibby, S. Widdicombe, H. Parry, J. Spicer and R. Pippe, “Effects of Ocean Acidification on the Immune Response of the Blue Mussel Mytilus edulis,” Aquatic Biology, Vol. 2, No. 1, 2008, pp. 67-74. doi:10.3354/ab00037
[9] J. L. Spicer, A. Raffo and S. Widdicombe, “Influence of CO2-Related Seawater Acidification on Extracellular Acid-Base Balance in the Velvet Swimming Crab Necora puber,” Marine Biology, Vol. 151, No. 3, 2007, pp. 1117-1125. doi:10.1007/s00227-006-0551-6
[10] D. Small, P. Calosi, D. White, J. I. Spicer and S. Widdicombe, “Impact of Medium-Term Exposure to CO2 Enriched Seawater on the Physiological Functions of the Velvet Swimming Crab Necora puber,” Aquatic Biology, Vol. 10, No. 1, 10, 2010, pp. 11-21. doi:10.3354/ab00266
[11] A. B. Christensen, H. D. Nguyen and M. Byrne, “Thermotolerance and the Effects of Hypercapnia on the Metabolic Rate of the Ophiuroid Ophionerein schayeri: Inferences for Survivorship in a Changing Ocean,” Journal of Experimental Marine Biology and Ecology, Vol. 403, No. 1-2, 2011, pp. 31-38. doi:10.1016/j.jembe.2011.04.002
[12] R. Hale, P. Calosi, L. McNeill, N. Mieszkowska and S. Widdicombe, “Predicted Levels of Future Ocean Acidification and Temperature Rise Could Alter Community Structure and Biodiversity in Marine Benthic Communities,” Oikos, Vol. 120, No. 5, 2011, pp. 661-674. doi:10.1111/j.1600-0706.2010.19469.x
[13] S. Widdicombe, S. L. Dashfield, C. L. McNeill, H. R. Needham, A. Beesley, A. McEvoy, S. oxnevad, K. R. Clarke and J. A. Berge, “Effects of CO2 Induced Seawater Acidification on Infaunal Diversity and Sediment Nutrient Fluxes,” Marine Ecology Progress Series, Vol. 379, 2009, pp. 59-75. doi:10.3354/meps07894
[14] A. Temming, C. Rückert and M. Hufnagel, “Entwicklung, Parametrisierung und Anwendung Eines Spezifischen Y/R Modells für die Nordseegarnele C. crangon L. zur Beurteilung des Befischungszustandes,” Abschlussbericht Projektnr 03HS030, Institut für Hydrobiologie und Fischereiwissenschaften, Hamburg, 2008.
[15] R. Saborowski, U. Bickmeyer and C. Sahlmann, “Relation between pH and Enzyme Expression in the Midgut Gland of the Brown Shrimp Crangon crangon,” Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, Vol. 151, No. 1, 2008, 16 p.
[16] S. A. Arnott, D. M. Neil and A. D. Ansell, “Escape Trajectories of the Brown Shrimp Crangon crangon and a Theoretical Consideration of Initial Escape Angles from Predators,” Journal of Experimental Biology, Vol. 202, No. 2, 1999, pp. 193-209.
[17] P. A. Haefner Jr., “The Effect of Low Dissolved Oxygen Concentrations on Temperature/Salinity Tolerance of the Sand Shrimp, Crangon septemspinosa Say,” Physiological Zoology, Vol. 43, No. 1, 1970, pp. 30-37.
[18] M. Regnault, “Salinity-Induced Changes in Ammonia Excretion Rate of the Shrimp C. crangon over a Winter Tidal Cycle,” Marine Ecology Progress Series, Vol. 20, 1984, pp. 119-125. doi:10.3354/meps020119
[19] A. Gerhardt, M. Clostermann, B. Fridlund and E. Svensson, “Monitoring of Behavioral Patterns of Aquatic Organisms with an Impedance Conversion Technique,” Environment International, Vol. 20, No. 2, 1994, pp. 209-219.
[20] A. Gerhardt, A. Carlssson, C. Ressemann and K. P. Stich, “A New Online Biomonitoring System for Gammarus pulex (L) (Crustacea: In Situ Test below a Copper Effluent in South Sweden,” Environmental Science & Technology, Vol. 31, No. 1, 1998, pp. 150-156. doi:10.1021/es970442j
[21] A. J. Kirkpatrick, A. Gerhardt, J. T. A. Dick, M. McKenna and J. A. Berges, “Use of the Multispecies Freshwater Biomonitor to Assess Behavioural Changes of Corophium volutator (Pallas, 1766) (Crustacea, Amphipoda) in Response to Toxicant Exposure in Sediment,” Ecotoxicology and Environmental Safety, Vol. 64, No. 4, 2005, pp. 298-303.
[22] C. Kienle and A. Gerhardt, “Behavior of Corophium volutator (Crustacea, Amphipoda) Exposed to the Water-Accomodated Fraction of Oil in Water and Sediment,” Environmental Toxicology and Chemistry, Vol. 27, No. 3, 2008, pp. 599-604. doi:10.1897/07-182.1
[23] S. C. Stewart, J. T. A. Dick, P. R. Laming and A. Gerhardt, “Assessment of the Multispecies Freshwater Biomonitor (MFB) in a Marine Context: The Green Crab (Carcinus maenas) as Early Warning Indicator,” Journal of Environmental Monitoring, Vol. 12, No. 8, 2010, pp. 1566-1574. doi:10.1039/b925474a
[24] A. Gerhardt, L. J. de Bisthoven and S. Schmidt, “Automated Recording of Vertical Negative Phototactic Behaviour in Daphnia magna (Crustacea),” Hydrobiologica, Vol. 559, No. 1, 2006, pp. 433-441. doi:10.1007/s10750-005-1259-1
[25] A. Gerhardt, L. J. de Bisthoven and E. Penders, “Quality Control of Drinking Water from the River Rhine (Netherlands) with the Multispecies Freshwater Biomonitor,” Aquatic Ecosystem Health Management Society, Vol. 6, No. 2, 2003, pp. 159-166.
[26] A. Gerhardt, L. J. de Bisthoven and A. M. V. M. Soares, “Macroinvertebrate Response to Acid Mine Drainage: Community Metrics and On-Line Behavioural Toxicity Bioassay,” Environmental Pollution, Vol. 130, No. 2, 2004, pp. 263-274. doi:10.1016/j.envpol.2003.11.016
[27] L. Janssens de Bisthoven, A. Gerhardt, K. Guhr and A. M. V. M. Soares, “Behavioral Changes and Acute Toxicity to the Freshwater Shrimp Atyaephyra desmaresti Millet (Decapoda: Natantia) from Exposure to Acid Mine Drainage,” Ecotoxicology, Vol. 15, No. 2, 2006, pp. 215-227. doi:10.1007/s10646-005-0052-2
[28] A. Gerhardt, “Impact of Heavy Metals on Stream Invertebrates with Special Emphasis on Acid Conditions,” Water, Air and Soil Pollution, Vol. 66, No. 3-4, 1993, pp. 289-314.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.