Differentiation of human osteosarcoma 3AB-OS stem-like cells in derivatives of the three primary germ layers as a useful in vitro model to develop several purposes


A number of solid tumors contain a distinct subpopulation of cells, termed cancer stem cells (CSCs) which represent the source for tissue renewal and hold malignant potential and which would be responsible for therapy resistance. Today, the winning goal in cancer research would be to find drugs to kill both cancer cells and cancer stem cells, while sparing normal cells. Osteosarcoma is an aggressive pediatric tumor of growing bones that, despite surgery and chemotherapy, is prone to relapse. We have recently selected from human osteosarcoma MG63 cells a cancer stem-like cell line (3AB-OS), which has unlimited proliferative potential, high levels of stemness-related markers, and in vivo tumorforming capacity in xenograft assays. Here, we have shown that 3AB-OS cells can differentiate in vitro into endoderm-, mesoderm-and ectoderm-derived lineages. Cell differentiation is morphological, molecular and functional. We propose that this model system of 3AB-OS differentiation in vitro might have a number of useful purposes, among which the study of molecular mechanisms of osteosarcoma origin, and the analysis of factors involved in specification of the various cell lineages. We still do not know either what are the shared and distinguishing characters between CSCs and normal stem cells, or what is the reason why the cancer stem cells, like the normal stem cells, have the ability to differentiate toward the derivatives of the primary germ layers. It is possible that each of the differentiation capability may be exploited by CSCs to supply their needs of growing and surviving in hostile microenvironment.

Share and Cite:

Fiore, R. , Drago-Ferrante, R. , D’Anneo, A. , Blasio, A. , Santulli, A. , Messina, C. , Carlisi, D. , Tesoriere, G. and Vento, R. (2013) Differentiation of human osteosarcoma 3AB-OS stem-like cells in derivatives of the three primary germ layers as a useful in vitro model to develop several purposes. Stem Cell Discovery, 3, 188-201. doi: 10.4236/scd.2013.33024.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Tang, N., Song, W.X., Luo, J., Haydon, R.C. and He, T.C. (2008) Osteosarcoma development and stem cell differentiation. Clinical Orthopaedics and Related Research, 8, 2114-2130. doi:10.1007/s11999-008-0335-z
[2] Ta, H.T., Dass, C.R., Choong, P.F. and Dunstan, D.E. (2009) Osteosarcoma treatment: State of the art. Cancer and Metastasis Reviews, 28, 247-263. doi:10.1007/s10555-009-9186-7
[3] Mirabello, L., Pfeiffer, R., Murphy, G., Daw, N.C., Patino-Garcia, A., Troisi, R.J., Hoover, R.N., Douglass, C., Schuz, J., Craft, A.W. and Savage, S.A. (2011) Height at diagnosis and birth-weight as risk factors for osteosarcoma. Cancer Causes & Control, 22, 899-908. doi:10.1007/s10552-011-9763-2
[4] Wesolowski, R. and Budd, G.T. (2010) Use of chemotherapy for patients with bone and soft-tissue sarcomas. Cleveland Clinic Journal of Medicine, 77, S23-S26. doi:10.3949/ccjm.77.s1.05
[5] Clevers, H. (2011) The cancer stem cell: Premises, promises and challenges. Nature Medicine, 17, 313-319. doi:10.1038/nm.2304
[6] Li, L. and Neaves, W.B. (2006) Normal stem cells and cancer stem cells: The niche matters. Cancer Research, 66, 4553-4557. doi:10.1158/0008-5472.CAN-05-3986
[7] Maitland, N.J. and Collins, A.T. (2008) Prostate cancer stem cells: A new target for therapy. Journal of Clinical Oncology, 26, 2862-2870. doi:10.1200/JCO.2007.15.1472
[8] Frank, N.Y., Schatton, T. and Frank, M.H. (2010) The therapeutic promise of the cancer stem cell concept. Journal of Clinical Investigation, 120, 41-50. doi:10.1172/JCI41004
[9] Morrison, R., Schleicher, S.M., Sun, Y., Niermann, K.J., Kim, S., Spratt, D.E., Chung, C.H. and Lu, B. (2011) Targeting the mechanisms of resistance to chemotherapy and radiotherapy with the cancer stem cell hypothesis. Journal of Oncology, 2011, 13 p. doi:10.1155/2011/941876
[10] Prud’homme, G.J. (2012) Cancer stem cells and novel targets for antitumor strategies. Current Pharmaceutical Design, 18, 2838-2849. doi:10.2174/138161212800626120
[11] De Blasio, A., Musmeci, M.T., Giuliano, M., Lauricella, M., Emanuele, S., D'Anneo, A., Vassallo, B., Tesoriere, G. and Vento, R. (2003) The effect of 3-aminobenzamide, inhibitor of poly(ADP-ribose) polymerase, on human osteosarcoma cells. International Journal of Oncology, 23, 1521-1528.
[12] De Blasio, A., Messina, C., Santulli, A., Mangano, V., Di Leonardo, E., D’Anneo, A., Tesoriere, G. and Vento, R. (2005) Differentiative pathway activated by 3-aminobenzamide, an inhibitor of PARP, in human osteosarcoma MG63 cells. FEBS Letters, 579, 615-620. doi:10.1016/j
[13] Di Fiore, R., Santulli, A., Ferrante, R.D., Giuliano, M., De Blasio, A., Messina, C., Pirozzi, G., Tirino, V., Tesoriere, G. and Vento, R. (2009) Identification and expansion of human osteosarcoma-cancer-stem cells by long-term 3-aminobenzamide treatment. Journal of Cellular Physio-logy, 219, 301-313. doi:10.1002/jcp.21667
[14] Di Fiore, R., Fanale, D., Drago-Ferrante, R., Chiaradonna, F., Giuliano, M., De Blasio, A., Amodeo, V., Corsini, L.R., Bazan, V., Tesoriere, G., Vento, R. and Russo, A. (2012). Genetic and Molecular Characterization of the human osteosarcoma 3AB-OS cancer stem cell line: A possible model for studying osteosarcoma origin and stemness. Journal of Cellular Physiology, 228, 1189-1201. doi:10.1002/jcp.24272
[15] Di Fiore, R., Guercio, A., Puleio, R., Di Marco, P., Drago-Ferrante, R., D’Anneo, A., De Blasio, A., Carlini, D., Di Bella, S., Pentimalli, F., Forte, I.M., Giordano, A., Tesoriere, G. and Vento, R. (2012). Modeling human osteosarcoma in mice through 3AB-OS cancer stem cell xenografts. Journal of Cellular Biochemestry, 113, 3380-3392. doi:10.1002/jcb.24214
[16] Wei, X., Wang, C.Y., Liu, Q.P., Li, J., Li, D., Zhao, F.T., Lian, J.Q., Xie, Y.M., Wang, P.Z., Bai, X.F. and Jia, Z.S. (2008) In vitro hepatic differentiation of mesenchymal stem cells from human fetal bone marrow. The Journal of International Medical Research, 36, 721-727. doi:10.1177/147323000803600414
[17] Cerec, V., Glaise, D., Garnier, D., Morosan, S., Turlin, B., Drenou, B., Gripon, P., Kremsdorf, D., Guguen-Guillouzo, C. and Corlu, A. (2007) Transdifferentiation of hepatocyte-like cells from the human hepatoma HepaRG cell line through bipotent progenitor. Hepatology, 45, 957-967. doi:10.1002/hep.21536
[18] Tondreau, T., Lagneaux, L., Dejeneffe, M., Massy, M., Mortier, C., Delforge, A. and Bron, D. (2004) Bone marrow-derived mesenchymal stem cells already express specific neural proteins before any differentiation. Differentiation, 72, 319-326. doi:10.1111/j.1432-0436.2004.07207003.x
[19] Park, B.W., Hah, Y.S., Kim, D.R., Kim, J.R. and Byun, J.H. (2007) Osteogenic phenotypes and mineralization of cultured human periosteal-derived cells. Archives of Oral Biology, 52, 983-989. doi:10.1016/j.archoralbio.2007.04.007
[20] Post, S., Abdallah, B.M., Bentzon, J.F. and Kassem, M. (2008) Demonstration of the presence of independent preosteoblastic and pre-adipocytic cell populations in bone marrow-derived mesenchymal stem cells. Bone, 43, 32-39. doi:10.1016/j.bone.2008.03.011
[21] Mauney, J.R., Volloch, V. and Kaplan, D.L. (2005) Matrix-mediated retention of adipogenic differentiation potential by human adult bone marrow-derived mesenchymal stem cells during ex vivo expansion. Biomaterials, 26, 6167-6175. doi:10.1016/j.biomaterials.2005.03.024
[22] Ilancheran, S., Michalska, A., Peh, G., Wallace, E.M., Pera, M. and Manuelpillai, U. (2007) Stem cells derived from human fetal membranes display multilineage differentiation potential. Biology of Reproduction, 77, 577-588. doi:10.1095/biolreprod.106.055244
[23] Shim, W.S., Jiang, S., Wong, P., Tan, J., Chua, Y.L., Tan, Y.S., Sin, Y.K., Lim, C.H., Chua, T., The, M., Liu, T.C. and Sim, E. (2004) Ex vivo differentiation of human adult bone marrow stem cells into cardiomyocyte-like cells. Biochemical and Biophysical Research Communications, 324, 481-488. doi:10.1016/j.bbrc.2004.09.087
[24] Oswald, J., Boxberger, S., Jorgensen, B., Feldmann, S., Ehninger, G., Bornhauser, M. and Werner, C. (2004) Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells, 22, 377-384. doi:10.1634/stemcells.22-3-377
[25] Yen, M.L., Tsai, H.F., Wu, Y.Y., Hwa, H.L., Lee, B.H. and Hsu, P.N. (2008) TNF-related apoptosis-inducing ligand (TRAIL) induces osteoclast differentiation from monocyte/macrophage lineage precursor cells. Molecular Immunology, 45, 2205-2213. doi:10.1016/j.molimm.2007.12.003
[26] Ljusberg, J., Wang, Y., Lang, P., Norgard, M., Dodds, R., Hultenby, K., Ek-Rylander, B. and Andersson, G. (2005) Proteolytic excision of a repressive loop domain in tartrate-resistant acid phosphatase by cathepsin K in osteoclasts. The Journal of Biological Chemistry, 280, 28370-28381. doi:10.1074/jbc.M502469200
[27] Kerr, C.L., Letzen, B.S., Hill, C.M., Agrawal, G., Thakor, N.V., Sterneckert, J.L., Gearhart, J.D. and All, A.H. (2010) Efficient differentiation of human embryonic stem cells into oligodendrocyte progenitors for application in a rat contusion model of spinal cord injury. International Journal of Neuroscience, 120, 305-313. doi:10.3109/00207450903585290
[28] Tarsa, L. and Balkowiec, A. (2009) Nerve growth factor regulates synaptophysin expression in developing trigeminal ganglion neurons in vitro. Neuropeptides, 43, 47-52. doi:10.1016/j.npep.2008.09.009
[29] Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., Slukvin, I.I. and Thomson, J.A. (2007) Induced pluripotent stem cell lines derived from Human Somatic Cells. Science, 318, 1917-1920. doi:10.1126/science.1151526
[30] Clark, A.T., Rodriguez, R.T., Bodnar, M.S., Abeyta, M.J., Cedars, M.I., Turek, P.J., Firpo, M.T. and Reijo Pera, R.A. (2004) Human STELLAR, NANOG, and GDF3 genes are expressed in pluripotent cells and map to chromosome 12p13, a hotspot for teratocarcinoma. Stem Cells, 22, 169-179. doi:10.1634/stemcells.22-2-169
[31] Reagan, M.R. and Kaplan, D.L. (2011) Concise review: Mesenchymal stem cell tumor-homing: Detection methods in disease model systems. Stem Cells, 29, 920-927. doi:10.1002/stem.645
[32] Clarke, M.F., Dick, J.E., Dirks, P.B., Eaves, C.J., Jamieson, C.H., Jones, D.L., Visvader, J., Weissman, I.L. and Wahl, G.M. (2006) Cancer stem cells-perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Research, 66, 9339-9344. doi:10.1158/0008-5472.CAN-06-3126
[33] Heddleston, J.M., Hitomi, M., Venere ,M., Flavahan, W.A., Yang, K., Kim, Y., Minhas, S., Rich, J.N. and Hjelmeland, A.B. (2011) Glioma stem cell maintenance: The role of the microenvironment. Current Pharmaceutical Design, 17, 2386-2401. doi:10.2174/138161211797249260
[34] Bapat, S.A. (2007) Evolution of cancer stem cells. Seminars in Cancer Biology, 17, 204-213. doi:10.1016/j.semcancer.2006.05.001
[35] Mikhail, S. and He, A.R. (2011) Liver cancer stem cells. International Journal of Hepatology, 2011, Article ID: 486954. doi:10.4061/2011/486954
[36] Valkenburg, K.C., Graveel, C.R, Zylstra-Diegel, C.R., Zhong, Z. and Williams, B.O. (2011) Wnt/β-catenin Signaling in normal and cancer stem cells. Cancers, 3, 2050-2079. doi:10.3390/cancers3022050
[37] Park, J.E., Tan, H.S., Datta, A., Lai, R.C., Zhang, H., Meng, W., Lim, S.K. and Sze, S.K. (2010) Hypoxic tumor cell modulates its microenvironment to enhance angiogenic and metastatic potential by secretion of proteins and exosomes. Molecular & Cellular Proteomics, 9, 1085-1099. doi:10.1074/mcp.M900381-MCP200
[38] Rashid, S.T. and Lomas, D.A. (2012) Stem cell-based therapy for α1-antitrypsin deficiency. Stem Cell Research and Therapy, 3, 4. doi:10.1186/scrt95
[39] Sanal, M.G. (2011) Future of liver transplantation: Nonhuman primates for patient-specific organs from induced pluripotent stem cells. World Journal of Gastroenterology, 17, 3684-3690. doi:10.3748/wjg.v17.i32.3684
[40] Barrero, M.J. and Izpisua Belmonte, J.C. (2011) iPS cells forgive but do not forget. Nature Cell Biology, 13, 523-525. doi:10.1038/ncb0511-523
[41] Odorico, J.S., Kaufman, D.S. and Thomson, J.A. (2001) Multilineage differentiation from human embryonic stem cell lines. Stem Cells, 19, 193-204. doi:10.1634/stemcells.19-3-193

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.