Multi-Objective Optimization Using Genetic Algorithms of Multi-Pass Turning Process

Abstract Full-Text HTML Download Download as PDF (Size:655KB) PP. 601-610
DOI: 10.4236/eng.2013.57072    4,727 Downloads   7,840 Views   Citations

ABSTRACT

In this paper we present a multi-optimization technique based on genetic algorithms to search optimal cuttings parameters such as cutting depth, feed rate and cutting speed of multi-pass turning processes. Tow objective functions are simultaneously optimized under a set of practical of machining constraints, the first objective function is cutting cost and the second one is the used tool life time. The proposed model deals multi-pass turning processes where the cutting operations are divided into multi-pass rough machining and finish machining. Results obtained from Genetic Algorithms method are presented in Pareto frontier graphic; this technique helps us in decision making process. An example is presented to illustrate the procedure of this technique.

Cite this paper

A. Jabri, A. Barkany and A. Khalfi, "Multi-Objective Optimization Using Genetic Algorithms of Multi-Pass Turning Process," Engineering, Vol. 5 No. 7, 2013, pp. 601-610. doi: 10.4236/eng.2013.57072.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] P. Tsai, “An Optimization Algorithm and Economic Analysis for a Constrained Machining Model,” Ph.D. Thesis, West Virginia University, Morgantown, 1986.
[2] M. S. Chua, H. T. Loh, Y. S. Wong and M. Rahman, “Optimization of Cutting Conditions for Multi-Pass Turning Operations Using Sequential Quadratic Programming,” Journal of Material Processing Technology, Vol. 28, No. 1-2, 1991, pp. 253-262. doi:10.1016/0924-0136(91)90224-3
[3] Y. C. Shin and Y. S. Joo, “Optimization of Machining Conditions with Practical Constraints,” International Journal of Production Research, Vol. 30, No. 12, 1992, pp. 2907-2919. doi:10.1080/00207549208948198
[4] J. S. Agapiou, “The Optimization of Machining Operations Based on a Combined Criterion, Part 1: The Use of Combined Objectives in Single-Pass Operations, Part 2: Multi-Pass Operations,” ASME Journal of Engineering for Industry, Vol. 114, 1992, pp. 500-513.
[5] J. A. Wang, “Neural Network Approach to Multiple Objective Cutting Parameter Optimization Based on Fuzzy Preference Information,” Computer Industrial Engineering, Vol. 25, No. 1-4, 1993, pp. 389-392. doi:10.1016/0360-8352(93)90303-F
[6] R. Gupta, I. L. Baaa and G. K. Lal, “Determination of Optimal Subdivision of Depth of Cut in Multi-Pass Turning with Constrains,” International Journal Production Research, Vol. 33, No. 9, 1995, pp. 2555-2565. doi:10.1080/00207549508904831
[7] M. C. Chen and D. M. Tsai, “A Simulated Annealing Approach for Optimization of Multi-Pass Turning Operations,” International Journal Production Research, Vol. 34, No. 10, 1996, pp. 2803-2825. doi:10.1080/00207549608905060
[8] P. K. Kee, “Development of Constrained Optimization Analyses and Strategies for Multi-Pass Rough Turning Operations,” International Journal of Machine Tools Manufacturing, Vol. 36, No. 1, 1996, pp. 115-127. doi:10.1016/0890-6955(95)00009-M
[9] C. Y. Nian, W. H. Yang and Y. S. Tarng, “Optimization of Turning Operations with Multiple Performance Characteristics,” Journal of Materials Processing Technology, Vol. 95, No. 1-3, 1999, pp. 90-96. doi:10.1016/S0924-0136(99)00271-X
[10] N. Alberti and G. Perrone, “Multi-Pass Machining Optimization by Using Fuzzy Possibilistic Programming and Genetic Algorithms,” Journal of Engineering Manufacture, Vol. 213, No. 3, 1999, pp. 261-273. doi:10.1243/0954405991516741
[11] B. Arezzo, K. Ridgway and A. M. A. Al-Ahmari, “Selection of Cutting Tools and Conditions of Machining Operations Using an Expert System,” Computers Industry, Vol. 42, No. 1, 2000, pp. 43-58. doi:10.1016/S0166-3615(99)00051-2
[12] T. Dereii, I. H. Filiz and A. Baykasoglu, “Optimizing Cutting Parameters in Process Planning of Prismatic Parts by Using Genetic Algorithms,” International Journal Production Research, Vol. 39, No. 15, 2001, pp. 3303-3328. doi:10.1080/00207540110057891
[13] G. C. Onwubolu and T. Kumalo, “Optimization of Multi Pass Turning Operations with Genetic Algorithm,” International Journal Production Research, Vol. 39, No. 16, 2001, pp. 3727-3745.
[14] A. M. A. Al-Ahmari, “Mathematical Model for Deter mining Machining Parameters in Multi-Pass Turning Operations with Constraints,” International Journal Production Research, Vol. 39, No. 15, 2001, pp. 3367-3376. doi:10.1080/00207540110052562
[15] X. Wang, Z. J. Da, A. K. Balaji and I. S. Jawahir, “Per formance-Based Optimal Selection of Cutting Conditions and Cutting Tools in Multi-Pass Turning Operations Us ing Genetic Algorithms,” International Journal Production Research, Vol. 40, No. 9, 2002, pp. 2053-2065. doi:10.1080/00207540210128279
[16] K. Vijayakumar, G. Prabhaharan, P. Asokan and R. Saravanan, “Optimization of Multi-Pass Turning Operations Using Ant Colony System,” International Journal of Machine Tools Manufacture, Vol. 43 No. 15, 2003, pp. 1633-1639. doi:10.1016/S0890-6955(03)00081-6
[17] C. Franci and B. Joze “Optimization of Cutting Process by GA Approach,” Robotics and Computer Integrated Manufacturing, Vol. 19, 2003, pp. 113-121. doi:10.1016/S0736-5845(02)00068-6
[18] U. Zuperl, F. Cus, B. Mursecb and T. Ploj, “A Hybrid Analytical-Neural Network Approach to the Determination of Optimal Cutting Conditions,” Journal of Materials Processing Technology, Vol. 157-158, 2004, pp. 82-90. doi:10.1016/j.jmatprotec.2004.09.019
[19] X. Wang and I. S. Jawahir, “Optimization of Multi-Pass Turning Operations Using Genetic Algorithms for the Selection of Cutting Conditions and Cutting Tools with Tool-Wear Effect,” International Journal Production Research, Vol. 43, No. 17, 2005, pp. 3543-3559. doi:10.1080/13629390500124465
[20] R. Q. Sardinas, M. R. Santana and E. A. Brindis, “Genetic Algorithm-Based Multi-Objective Optimization of Cutting Parameters in Turning Processes,” Engineering Applications of Artificial Intelligence, Vol. 19, No. 2, 2006, pp. 127-133. doi:10.1016/j.engappai.2005.06.007
[21] F. Cus and U. Zuperl “Approach to Optimization of Cutting Conditions by Using Artificial Neural Networks,” Journal of Materials Processing Technology, Vol. 173, No. 3, 2006, pp. 281-290. doi:10.1016/j.jmatprotec.2005.04.123
[22] N. R. Abburi and U. S. Dixit, “Multi-Objective Optimiza Tion of Multi-Pass Turning Processes,” International Journal of Advanced Manufacturing Technology, Vol. 32, No. 9-19, 2007, pp. 902-910. doi:10.1007/s00170-006-0425-6
[23] A. R. Yildiz, “Hybrid Taguchi-Harmony Search Algorithm for Solving Engineering Optimization Problems,” International Journal of Industrial Engineering, Vol. 15, No. 3, 2008, pp. 286-293.
[24] D. K. Ojha, U. S. Dixit and J. P. Davim, “A Soft Com puting Based Optimization of Multi-Pass Turning Processes,” International Journal Material Production Tech nology, Vol. 35, No. 1-2, 2009, pp. 145-166. doi:10.1504/IJMPT.2009.025224
[25] J. Srinivas, R. Giri and S. H. Yang, “Optimization of Multi-Pass Turning Using Particle Swarm Intelligence,” International Journal of Advanced Manufacturing Technology, Vol. 40, 2009, pp. 56-66.
[26] K. Deepak “Cutting Speed and Feed Rate Optimization for Minimizing Production Time of Turning Process,” International Journal of Modern Engineering Research, Vol.2, No. 5, 2012, pp. 3398-3401.
[27] R. Venkata and V. Kalyankar “Multi-Pass Turning Process Parameter Optimization Using Teaching-Learning Based Optimization Algorithm,” Transactions D: Computer Science & Engineering and Electrical Engineering, 2013 (in press).
[28] A. Aggarwal and H. Singh, “Optimization of Machining Techniques—A Retrospective and Literature Review,” Sadhana, Vol. 30, No. 6, 2005, pp. 699-711. doi:10.1007/BF02716704
[29] K. Deepak “Applications of Different Optimization Methods for Metal Cutting Operation—A Review,” Research Journal of Engineering Sciences, Vol. 1 No. 3, 2012, pp. 52-58.
[30] E. J. A. Armarego and R. H. Brown, “The Machining of Metal,” Prentice-Hall, Englewood Cliffs, 1969.
[31] S. K. Hati and S. S. Rao, “Determination of Optimum Machining Conditions Deterministic and Probabilistic Approaches,” Journal of Engineering for Industry, Vol. 98, No. 1, 1976, pp. 354-359.
[32] R. V. Narang and G. W. Fischer, “Development of a Frame Work to Automate Process Planning Functions and Determine Machining Parameters,” International Journal of Production Research, Vol. 31, No. 8, 1993, pp. 1921-1942. doi:10.1080/00207549308956832
[33] D. Goldberg “Genetic Algorithms in Search, Optimization, and Machine Learning,” Machine Learning, Vol. 3, No. 2-3, 1988, pp. 95-99. doi:10.1023/A:1022602019183

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.