[1]
|
A. Hamzeh, A. Iranmanesh, S. Hossein-Zadeh and M. V. Diudea, “Generalized Degree Distance of Trees, Unicyclic and Bicyclic Graphs,” Studia Ubb Chemia, LVII, Vol. 4, 2012, pp. 73-85.
|
[2]
|
M. V. Diudea, I. Gutman and L. Jantschi, “Molecular Topology,” Nova Science, Huntington, 2001.
|
[3]
|
W. Imrich and S. Klavzar, “Product Graphs: Structure and Recognition,” John Wiley & Sons, New York, 2000.
|
[4]
|
I. Gutman and N. Trinajstic, “Graph Theory and Molecular Orbitals. Total π-Electron Energy of Alternant Hydrocarbons,” Chemical Physics Letters, Vol. 17, No. 4, 1972, pp. 535-538. doi:10.1016/0009-2614(72)85099-1
|
[5]
|
S. Nikolic, G. Kovacevic, A. Milicevic and N. Trinajstic, “The Zagreb Indices 30 Years after,” Croatica Chemica Acta, Vol. 76, No. 2, 2003, pp. 113-124.
|
[6]
|
T. Doslic, “Vertex-Weighted Wiener Polynomials for Composite Graphs,” Ars Mathematica Contemporanea, Vol. 1, No. 1, 2008, pp. 66-80.
|
[7]
|
I. Gutman, “A Property of the Wiener Number and Its Modifications,” Indian Journal of Chemistry, Vol. 36A, No. 2, 1997, pp. 128-132.
|
[8]
|
I. Gutman, A. A. Dobrynin, S. Klavzar and L. Pavlovic, “Wiener-Type Invariants of Trees and Their Relation,” Bulletin of the Institute of Combinatorics and Its Applications, Vol. 40, No. 1, 2004, pp. 23-30.
|
[9]
|
Y. Alizadeh, A. Iranmanesh and T. Doslic, “Additively Weighted Harary Index of Some Composite Graphs,” Discrete Mathematics, Vol. 313, No. 1, 2013, pp. 26-34.
doi:10.1016/j.disc.2012.09.011
|
[10]
|
A. A. Dobrynin and A. A. Kochetova, “Degree Distance of a Graph: A Degree Analogue of the Wiener Index,” Journal of Chemical Information and Computer Sciences, Vol. 34, No. 5, 1994, pp. 1082-1086.
doi:10.1021/ci00021a008
|
[11]
|
I. Gutman, “Selected Properties of the Schultz Molecular Topological Index,” Journal of Chemical Information and Computer Sciences, Vol. 34, No. 5, 1994, pp. 1087-1089.
doi:10.1021/ci00021a009
|
[12]
|
I. Gutman, and S. Klavzar, “Wiener Number of Vertex-Weighted Graphs and a Chemical Applications,” Discrete Applied Mathematics, Vol. 80, No. 1, 1997, pp. 73-81.
doi:10.1016/S0166-218X(97)00070-X
|
[13]
|
H. Hua and S. Zhang, “On the Reciprocal Degree Distance of Graphs,” Discrete Applied Mathematics, Vol. 160, No. 7-8, 2012, pp. 1152-1163. doi:10.1016/j.dam.2011.11.032
|
[14]
|
S. Hossein-Zadeh, A. Hamzeh and A. R. Ashrafi, “Extremal Properties of Zagreb Coindices and Degree Distance of Graphs,” Miskolc Mathematical Notes, Vol. 11, No. 2, 2010, pp. 129-137.
|
[15]
|
I. Tomescu, “Unicyclic and Bicyclic Graphs Having Minimum Degree Distance,” Discrete Applied Mathematics, Vol. 156, No. 1, 2008, pp. 125-130.
doi:10.1016/j.dam.2007.09.010
|
[16]
|
I. Tomescu, “Some Extremal Properties of the Degree Distance of a Graph,” Discrete Applied Mathematics, Vol. 98, No. 1-2, 1999, pp. 159-163.
doi:10.1016/S0166-218X(99)00117-1
|
[17]
|
A. Graovac and T. Pisanski, “On the Wiener Index of a Graph,” Journal of Mathematical Chemistry, Vol. 8, No. 1, 1991, pp. 53-62. doi:10.1007/BF01166923
|
[18]
|
B. E. Sagan, Y.-N. Yeh and P. Zhang, “The Wiener Polynomial of a Graph,” International Journal of Quantum Chemistry, Vol. 60, No. 5, 1996, pp. 959-969.
doi:10.1002/(SICI)1097-461X(1996)60:5<959::AID-QUA2>3.0.CO;2-W
|
[19]
|
S. Klavzar, A. Rajapakse and I. Gutman, “The Szeged and the Wiener Index of Graphs,” Applied Mathematics Letters, Vol. 9, No. 5, 1996, pp. 45-49.
doi:10.1016/0893-9659(96)00071-7
|
[20]
|
M. H. Khalifeh, H. Yousefi-Azari and A. R. Ashrafi, “The Hyper-Wiener Index of Graph Operations,” Computers & Mathematics with Applications, Vol. 56, No. 5, 2008, pp. 1402-1407. doi:10.1016/j.camwa.2008.03.003
|
[21]
|
M. Eliasi and A. Iranmanesh, “The Hyper-Wiener Index of the Generalized Hierarchical Product of Graphs,” Discrete Applied Mathematics, Vol. 159, No. 8, 2011, pp. 866-871. doi:10.1016/j.dam.2010.12.020
|
[22]
|
M. Eliasi and B. Taeri, “Schultz Polynomials of Composite Graphs,” Applicable Analysis and Discrete Mathematics, Vol. 2, No. 2, 2008, pp. 285-296.
doi:10.2298/AADM0802285E
|
[23]
|
S. Hossein-Zadeh, A. Hamzeh and A. R. Ashrafi, “Wiener-Type Invariants of Some Graph Operations,” Filomat, Vol. 29, No. 3, 2009, pp. 103-113. doi:10.2298/FIL0903103H
|
[24]
|
M. H. Khalifeh, H. Yousefi-Azari and A. R. Ashrafi, “The First and Second Zagreb Indices of Some Graph Operations,” Discrete Applied Mathematics, Vol. 157, No. 4, 2009, pp. 804-811. doi:10.1016/j.dam.2008.06.015
|
[25]
|
F. Harary, “Graph Theory,” Addison-Wesley, Reading, 1969.
|
[26]
|
N. Trinajstic, “Chemical Graph Theory,” CRC Press, Boca Raton, 1992.
|