Share This Article:

High-Fat Diets-Induced Metabolic Alterations Alter the Differentiation Potential of Adipose Tissue-Derived Stem Cells

Abstract Full-Text HTML XML Download Download as PDF (Size:723KB) PP. 197-207
DOI: 10.4236/ojemd.2013.33027    3,115 Downloads   5,671 Views   Citations

ABSTRACT

Background: Adipose tissue-derived stem cells (ASC) possess the ability to differentiate into adipocytes or endothelial cells to help in the adipogenesis, vasculogenesis and vascular repair. This study aims at determining the impact of high-fat diets (HFD)-induced type 2 diabetes (T2D) on the differentiation potential of ASC. Results: C57BL/6J male mice were fed a vegetal (VD) or an animal (AD) HFD. Isolation of ACS from mice showing different levels of metabolic alterations reveals that advanced T2D did not affect the number of cells per gram of tissue. Rather, a higher proportion of inflammatory CD36+ cells was identified in HFD fed mice. Despite a marked decreased expression of adipogenic genes (aP2, C/EBPα and PPARγ2), ASC from HFD groups had a higher adipogenic potential and a lower endothelial differentiation potential in vitro compared to control. ASC from the VD group had enhanced cyclin B1 expression and had more adipogenic potential compared to AD group. Conclusion: Our results demonstrate that the metabolic modifications, linked to the nature of fatty acids in diets, modulate the differentiation potential of ASC with increased adipogenesis to the detriment of the endothelial pathway. Results highlight the importance of evaluating the ASC differentiation behavior in a context of autologous cell-based therapy for the repair of vascular tissues in diabetic patients.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

V. Lamontagne, S. Akoum, I. Cloutier and J. Tanguay, "High-Fat Diets-Induced Metabolic Alterations Alter the Differentiation Potential of Adipose Tissue-Derived Stem Cells," Open Journal of Endocrine and Metabolic Diseases, Vol. 3 No. 3, 2013, pp. 197-207. doi: 10.4236/ojemd.2013.33027.

References

[1] S. Galic, J. S. Oakhill and G. R. Steinberg, “Adipose Tissue as an Endocrine Organ,” Molecular and Cellular Endocrinology, Vol. 316, No. 2, 2010, pp. 129-139. doi:10.1016/j.mce.2009.08.018
[2] M. Pittenger, P. Vanguri, D. Simonetti and R. Young, “Adult Mesenchymal Stem Cells: Potential for Muscle and Tendon Regeneration and Use in Gene Therapy,” Journal of Musculoskeletal and Neuronal Interactions, Vol. 2, 2002, pp. 309-320.
[3] K. W. Park, D. S. Halperin and P. Tontonoz, “Before They Were Fat: Adipocyte Progenitors,” Cell Metabolism, Vol. 8, No. 6, 2008, pp. 454-457. doi:10.1016/j.cmet.2008.11.001
[4] Q. Q. Tang, T. C. Otto and M. D. Lane, “Commitment of C3H10T1/2 Pluripotent Stem Cells to the Adipocyte Lineage,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 101, No. 26, 2004, pp. 9607-9611. doi:10.1073/pnas.0403100101
[5] F. M. Gregoire, C. M. Smas and H. S. Sul, “Understanding Adipocyte Differentiation,” Physiological Reviews, Vol. 78, No. 3, 1998, pp. 783-809.
[6] P. Zhang, N. Moudgill, E. Hager, et al., “Endothelial Differentiation of Adipose-Derived Stem Cells from Elderly Patients with Cardiovascular Disease,” Stem Cells and Development, Vol. 20, No. 6, 2011, pp. 977-988. doi:10.1089/scd.2010.0152
[7] Y. Cao, Z. Sun, L. Liao, Y. Meng, Q. Han and R. C. Zhao, “Human Adipose Tissue-Derived Stem Cells Differentiate into Endothelial Cells in Vitro and Improve Postnatal Neovascularization in Vivo,” Biochemical and Biophysical Research Communications, Vol. 332, No. 2, 2005, pp. 370-379. doi:10.1016/j.bbrc.2005.04.135
[8] P. Singla, A. Bardoloi and A. A. Parkash, “Metabolic Effects of Obesity: A Review,” World Journal of Diabetes, Vol. 1, No. 3, 2010, pp. 76-88. doi:10.4239/wjd.v1.i3.76
[9] S. El Akoum, V. Lamontagne, I. Cloutier and J. F. Tanguay, “Nature of Fatty Acids in High Fat Diets Differentially Delineates Obesity-Linked Metabolic Syndrome Components in Male and Female C57BL/6J Mice,” Diabetology & Metabolic Syndrome, Vol. 3, No. 1, 2011, p. 34.
[10] N. Ouchi, J. L. Parker, J. J. Lugus and K. Walsh, “Adipokines in Inflammation and Metabolic Disease,” Nature Reviews Immunology, Vol. 11, No. 2, 2011, pp. 85-97. doi:10.1038/nri2921
[11] V. DeClercq, C. Taylor and P. Zahradka, “Adipose Tissue: The Link between Obesity and Cardiovascular Disease,” Cardiovascular & Hematological Disorders Drug Targets, Vol. 8, No. 3, 2008, pp. 228-237. doi:10.2174/187152908785849080
[12] S. El Akoum, I. Cloutier and J. F. Tanguay, “Vascular Smooth Muscle Cell Alterations Triggered by Mice Adipocytes: Role of High-Fat Diet,” Journal of Atherosclerosis and Thrombosis, Vol. 19, 2012, pp. 1128-1141. doi:10.5551/jat.13482
[13] L. S. Ferreira, S. Gerecht, H. F. Shieh, et al., “Vascular Progenitor Cells Isolated from Human Embryonic Stem Cells Give Rise to Endothelial and Smooth Muscle Like Cells and Form Vascular Networks in Vivo,” Circulation Research, Vol. 101, 2007, pp. 286-294. doi:10.1161/CIRCRESAHA.107.150201
[14] W. Jianguo, L. Tianhang, Z. Hong, et al., “Optimization of Culture Conditions for Endothelial Progenitor Cells from Porcine Bone Marrow in Vitro,” Cell Proliferation, Vol. 43, No. 4, 2010, pp. 418-426. doi:10.1111/j.1365-2184.2010.00688.x
[15] V. Van Harmelen, K. Rohrig and H. Hauner, “Comparison of Proliferation and Differentiation Capacity of Human Adipocyte Precursor Cells from the Omental and Subcutaneous Adipose Tissue Depot of Obese Subjects,” Metabolism: Clinical and Experimental, Vol. 53, No. 5, 2004, pp. 632-637. doi:10.1016/j.metabol.2003.11.012
[16] S. Siddiq, D. Pamphilon, S. Brunskill, C. Doree, C. Hyde and S. Stanworth, “Bone Marrow Harvest versus Peripheral Stem Cell Collection for Haemopoietic Stem Cell Donation in Healthy Donors,” Cochrane Database of Systematic Reviews, 2009, Article ID: CD006406. doi:10.1002/14651858.CD006406.pub2
[17] A. Miranville, C. Heeschen, C. Sengenes, C. A. Curat, R. Busse and A. Bouloumie, “Improvement of Postnatal Neovascularization by Human Adipose Tissue-Derived Stem Cells,” Circulation, Vol. 110, No. 3, 2004, pp. 349-355. doi:10.1161/01.CIR.0000135466.16823.D0
[18] L. Cai, B. H. Johnstone, T. G. Cook, et al., “IFATS Collection: Human Adipose Tissue-Derived Stem Cells Induce Angiogenesis and Nerve Sprouting Following Myocardial Infarction, in Conjunction with Potent Preservation of Cardiac Function,” Stem Cells, Vol. 27, No. 1, 2009, pp. 230-237. doi:10.1634/stemcells.2008-0273
[19] V. Planat-Benard, J. S. Silvestre, B. Cousin, et al., “Plasticity of Human Adipose Lineage Cells toward Endothelial Cells: Physiological and Therapeutic Perspectives,” Circulation, Vol. 109, No. 5, 2004, pp. 656-663. doi:10.1161/01.CIR.0000114522.38265.61
[20] S. El Akoum, V. Lamontagne, I. Cloutier and J. F. Tanguay, “Nature of Fatty Acids in High Fat Diets Differentially Delineates Obesity-Linked Metabolic Syndrome Components in Male and Female C57BL/6J Mice,” Diabetology & Metabolic Syndrome, Vol. 3, No. 1, 2011, p. 34.
[21] E. Arner, P. O. Westermark, K. L. Spalding, et al., “Adipocyte Turnover: Relevance to Human Adipose Tissue morphology,” Diabetes, Vol. 59, No. 1, 2010, pp. 105-109. doi:10.2337/db09-0942
[22] S. P. Weisberg, D. McCann, M. Desai, M. Rosenbaum, R. L. Leibel and A. W. Ferrante Jr., “Obesity Is Associated with Macrophage Accumulation in Adipose Tissue,” The Journal of clinical investigation, Vol. 112, No. 12, 2003, pp. 1796-1808.
[23] Z. Wu, E. D. Rosen, R. Brun, et al., “Cross-Regulation of C/EBP Alpha and PPAR Gamma Controls the Transcriptional Pathway of Adipogenesis and Insulin Sensitivity,” Molecular Cell, Vol. 3, No. 2, 1999, pp. 151-158. doi:10.1016/S1097-2765(00)80306-8
[24] S. T. Nadler, J. P. Stoehr, K. L. Schueler, G. Tanimoto, B. S. Yandell and A. D. Attie, “The Expression of Adipogenic Genes Is Decreased in Obesity and Diabetes Mellitus,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 97, No. 21, 2000, pp. 11371-11376. doi:10.1073/pnas.97.21.11371
[25] S. G. Dubois, L. K. Heilbronn, S. R. Smith, J. B. Albu, D. E. Kelley and E. Ravussin, “Decreased Expression of Adipogenic Genes in Obese Subjects with Type 2 Diabetes,” Obesity, Vol. 14, No. 9, 2006, pp. 1543-1552. doi:10.1038/oby.2006.178
[26] S. P. Weisberg, D. McCann, M. Desai, M. Rosenbaum, R. L. Leibel and A. W. Ferrante Jr., “Obesity Is Associated with Macrophage Accumulation in Adipose Tissue,” Journal of Clinical Investigation, Vol. 112, No. 12, 2003, pp. 1796-1808.
[27] G. J. Tesz, A. Guilherme, K. V. Guntur, et al., “Tumor Necrosis Factor Alpha (TNFalpha) Stimulates Map4k4 Expression through TNFalpha Receptor 1 Signaling to c-Jun and Activating Transcription Factor 2,” The Journal of Biological Chemistry, Vol. 282, 2007, pp. 19302-19312. doi:10.1074/jbc.M700665200
[28] X. Tang, A. Guilherme, A. Chakladar, et al., “An RNA Interference-Based Screen Identifies MAP4K4/NIK as a Negative Regulator of PPARgamma, Adipogenesis, and Insulin-Responsive Hexose Transport,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 103, No. 7, 2006, pp. 2087-2092. doi:10.1073/pnas.0507660103
[29] J. B. Prins, C. U. Niesler, C. M. Winterford, et al., “Tumor Necrosis Factor-Alpha Induces Apoptosis of Human Adipose Cells,” Diabetes, Vol. 46, No. 12, 1997, pp. 1939-1944. doi:10.2337/diabetes.46.12.1939
[30] S. Nishimura, I. Manabe, M. Nagasaki, et al., “Adipogenesis in Obesity Requires Close Interplay between Differentiating Adipocytes, Stromal Cells, and Blood Vessels,” Diabetes, Vol. 56, No. 12, 2007, pp. 1517-1526. doi:10.2337/db06-1749
[31] A. G. Cristancho and M. A. Lazar, “Forming Functional Fat: A Growing Understanding of Adipocyte Differentiation,” Nature Reviews Molecular Cell Biology, Vol. 12, No. 11, 2011, pp. 722-734. doi:10.1038/nrm3198
[32] K. C. O’Connor, H. Song, N. Rosenzweig and D. A. Jansen, “Extracellular Matrix Substrata Alter Adipocyte Yield and Lipogenesis in Primary Cultures of Stromal-Vascular Cells from Human Adipose,” Biotechnology Letters, Vol. 25, No. 23, 2003, pp. 1967-1972. doi:10.1023/B:BILE.0000004386.08923.ab
[33] Y. Itoi, M. Takatori, H. Hyakusoku and H. Mizuno, “Comparison of Readily Available Scaffolds for Adipose Tissue Engineering Using Adipose-Derived Stem Cells,” Journal of Plastic, Reconstructive & Aesthetic Surgery: JPRAS, Vol. 63, 2010, pp. 858-864. doi:10.1016/j.bjps.2009.01.069
[34] B. C. Goh, S. Thirumala, G. Kilroy, R. V. Devireddy and J. M. Gimble, “Cryopreservation Characteristics of Adipose-Derived Stem Cells: Maintenance of Differentiation Potential and Viability,” Journal of Tissue Engineering and Regenerative Medicine, Vol. 1, No. 4, 2007, pp. 322-324. doi:10.1002/term.35
[35] Z. G. Zhao, W. M. Li, Z. C. Chen, Y. You and P. Zou, “Hematopoiesis Capacity, Immunomodulatory Effect and ex Vivo Expansion Potential of Mesenchymal Stem Cells Are not Impaired by Cryopreservation,” Cancer Investigation, Vol. 26, 2008, pp. 391-400. doi:10.1080/07357900701788049
[36] J. E. Lee, I. Kim and M. Kim, “Adipogenic Differentiation of Human Adipose Tissue-Derived Stem Cells Obtained from Cryopreserved Adipose Aspirates,” Dermatologic Surgery: Official Publication for American Society for Dermatologic Surgery, Vol. 36, No. 7, 2010, pp. 1078-1083.
[37] H. K. Kim, Y. J. Kim, J. T. Kim, et al., “Alterations in the Proangiogenic Functions of Adipose Tissue-Derived Stromal Cells Isolated from Diabetic Rats,” Stem Cells and Development, Vol. 17, No. 4, 2008, pp. 669-680. doi:10.1089/scd.2007.0141
[38] Y. Lin, X. Chen, Z. Yan, et al., “Multilineage Differentiation of Adipose-Derived Stromal Cells from GFP Transgenic Mice,” Molecular and Cellular Biochemistry, Vol. 285, No. 1-2, 2006, pp. 69-78. doi:10.1007/s11010-005-9056-8
[39] N. Krankel, V. Adams, A. Linke, et al., “Hyperglycemia Reduces Survival and Impairs Function of Circulating Blood-Derived Progenitor Cells,” Arteriosclerosis, Thrombosis, and Vascular Biology, Vol. 25, No. 4, 2005, pp. 698-703. doi:10.1161/01.ATV.0000156401.04325.8f
[40] D. M. Breen, K. K. Chan, J. K. Dhaliwall, et al., “Insulin Increases Reendothelialization and Inhibits Cell Migration and Neointimal Growth after Arterial Injury,” Arteriosclerosis, Thrombosis, and Vascular Biology, Vol. 29, No. 7, 2009, pp. 1060-1066. doi:10.1161/ATVBAHA.109.185447
[41] W. Zhang, X. Wang, H. Jin, et al., “Effects of High Glucose Plus High Insulin on Proliferation and Apoptosis of Mouse Endothelial Progenitor Cells,” Inflammation Research: Official Journal of the European Histamine Research Society, Vol. 57, 2008, pp. 571-576.
[42] M. E. Varney, W. E. Hardman and V. E. Sollars, “Omega 3 Fatty Acids Reduce Myeloid Progenitor Cell Frequency in the Bone Marrow of Mice and Promote Progenitor Cell Differentiation,” Lipids in Health and Disease, Vol. 8, 2009, p. 9. doi:10.1186/1476-511X-8-9

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.