Changes in Diatom Biodiversity in Lake Sinclair, Baldwin County, Georgia, USA


The effects of increased water temperature on algal community composition were investigated in Lake Sinclair, Baldwin County, Georgia, USA. The lake received waste cooling water from a coal burning power plant. Discharges of recycled lake water were, on average, 15°C ± 1.5°C (and up to 23°C) warmer than typical ambient temperatures. Seasonal changes in algal composition were observed, and the warmer sample site had a greater diversity of diatom species year round independent of changes in temperature. Thermal pollution created a high percent dissimilarity between diatoms at the warmer site and the remainder of the lake. Species turnover observed in natural samples was not detected for the warmer site. Anthropogenic thermal pollution was implicated as the factor inducing changes in the natural algal community composition, which may impact other trophic levels and ultimately the overall ecology of Lake Sinclair.

Share and Cite:

M. Smith and K. Manoylov, "Changes in Diatom Biodiversity in Lake Sinclair, Baldwin County, Georgia, USA," Journal of Water Resource and Protection, Vol. 5 No. 7, 2013, pp. 732-742. doi: 10.4236/jwarp.2013.57074.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] S. Kaushal, G. Likens, N. Jaworski, M. Pace, M. Sides, D. Seekell, K. Belt, D. Secor and R. Wingate, “Rising Streams and River Temperatures in the United States,” Ecology and Environment, Vol. 9, 2010, pp. 461-466.
[2] C. D. Becker, C. E. Cushing, K. L. Gore, K. S. Baker and D. H. McKenzie, “Synthesis and Analysis of Ecological Information from Cooling Impoundments,” Study Site Histories and Data Synopsis, Technical Report: EPRRI-EA-1054. Vol. 2, 1979, pp. 1-291.
[3] M. Burton and E. Likens, “Effect of Strip-Cutting on Stream Temperatures in Hubbard Brook Experimental Forest, New Hampshire,” BioScience, Vol. 23, 1973, pp. 433-35. doi:10.2307/1296545
[4] S. Kaushal, M. Groffman, G. Likens, et al., “Increased Salinization of Fresh Water in the Northeastern US,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 102, No. 38, 2005, pp. 13517-13520. doi:10.1073/pnas.0506414102
[5] S. Kaushal, M. Groffman, E. Band, et al., “Interaction between Urbanization and Climate Variability Amplifies Watershed Nitrate Export in Maryland,” Environmental Science and Technology, Vol. 42, No. 16, 2008, pp. 5872-5878. doi:10.1021/es800264f
[6] T. Kinouchi, “Impact of Long Term Water and Energy Consumption in Tokyo on Wastewater Effluent: Implications for Thermal Degradation of Urban Streams,” Hydrological Process, Vol. 21, No. 9, 2007, pp. 1207-1216. doi:10.1002/hyp.6680
[7] K. Nelson and A. Palmer, “Predicting Stream Temperatures in Urbanization and Climate Change: Implications for Stream Biota,” Journal of American Water Resources Association, Vol. 43, No. 2, 2007, pp. 440-452. doi:10.1111/j.1752-1688.2007.00034.x
[8] W. Webb and F. Nobilis, “Longterm Changes in River Temperature and the Influence of Climatic and Hydrologic Factors,” Hydrological Sciences Journal, Vol. 52, No. 1, 2007, pp. 74-85. doi:10.1623/hysj.52.1.74
[9] N. D. Weston, J. T. Hollibaugh and S. B. Joye, “Population Growth Away from the Coastal Zone: Thirty Years of Land Use Change and Nutrient Export in the Altamaha River, Ga,” Science of the Total Environment, Vol. 407, No. 10, 2009, pp. 3347-3356. doi:10.1016/j.scitotenv.2008.12.066
[10] T. J. Stuart and J. A. Stanford, “A Case of Thermal Pollution Limited Primary Productivity in a Southwestern USA. Reservoir,” Hydrobiologia, Vol. 58, No. 3, 1978, pp. 199-211. doi:10.1007/BF02346956
[11] S. Barczak and R. Kilpatrick, “Energy Impacts on Georgia’s Water Resources,” Proceedings of the 2003 Georgia Water Resources Conference, Athens, 20-21 April 2003.
[12] US EPA, “Report on Sinclair Lake Baldwin, Hancock and Putnam Counties Georgia EPA Region IV Working Paper No. 294,” US Environmental Protection Agency National Eutrophication Survey Working Paper Series, Vol. 294, 1972, pp. 1-66.
[13] J. Z. Reynolds, “Power Plant Cooling Systems: Policy Alternatives,” Science, Vol. 207, No. 4429, 1980, pp. 367-372. doi:10.1126/science.207.4429.367
[14] Georgia Department of Natural Resources Environmental Protection Division, “Water Quality in Georgia,” Atlanta, 1996-1997.
[15] T. Cheek and B. Evans, “Thermal Load, Dissolved Oxygen, and Assimilative Capacity; Is 316(a) Becoming Irrelevant,” 1998. http://Epridocs/AdvancedCooling/PresentationsDay1/6_EPRI-Cheek%20&%20Evans.pdf
[16] R. J. Stevenson, “An Introduction to Algal Ecology in Freshwater Benthic Habitat,” In: R. J. Stevenson, M. L. Bothwell and R. L. Lowe, Eds., Algal Ecology, Academic Press, San Diego, 1996, pp. 3-30.
[17] C. Hudon and P. Legendre, “The Ecological Implications of Growth Forms in Epibenthic Diatoms,” Journal of Phycology, Vol. 23, 1987, pp. 17-46. doi:10.1111/j.1529-8817.1987.tb02529.x
[18] K. Manoylov and R. Stevenson, “Density-Dependent Algal Growth along N and P Nutrient Gradients in Artificial Streams,” Advances in Phycological Studies, 2006, pp. 333-352.
[19] S. C. Stearns, “The Evolution of Life Histories,” Oxford University Press, Oxford, 1992.
[20] J. Stevenson, Y. Pan, K. M. Manoylov, P. Parker, P. Larsen and T. Herlihy, “Development of Diatom Indicators of Ecological Condition for Streams of the Western US,” Journal of the North American Benthological Society, Vol. 27, No. 4, 2008, pp. 1000-1016. doi:10.1899/08-040.1
[21] B. Van De Vijver and I. Beyerns, “Biogeography and Ecology of Freshwater Diatoms in Subantartica: A Review,” Journal of Biogeography, Vol. 26, No. 5, 1999, pp. 993-1000. doi:10.1046/j.1365-2699.1999.00358.x
[22] G. Kelly and A. Whitton, “The Trophic Diatom Index: A New Index for Monitoring Eutrophication in Rivers,” Journal of Applied Phycology, Vol. 7, No. 4, 1995, pp. 433-444. doi:10.1007/BF00003802
[23] B. Hill, J. Stevenson, Y. Pan, T. Herlihy and R. K. Johnson, “Comparison of Correlations between Environmental Characteristics and Stream Diatom Assemblages Characterized at Genus and Species Levels,” Journal of the North American Benthological Society, Vol. 20, No. 2, 2001, pp. 299-310. doi:10.2307/1468324
[24] R. J. Stevenson, C. G. Peterson, D. B. Kirschtel, C. C. King and N. C. Tuchman, “Succession and Ecological Strategies of Benthic Diatoms (Bacillariophyceae): Density-Dependent Growth and Effects of Nutrients and Shading,” Journal of Phycology, Vol. 27, 1991, pp. 59-69. doi:10.1111/j.0022-3646.1991.00059.x
[25] R. Pienitz, J. Smol and H. Birks, “Assessment of Freshwater Diatoms as Quantitative Indicators of Past Climatic Change in the Yukon and Northwest Territories, Canada,” Journal of Paleolimnology, Vol. 13, No. 1, 1995, pp. 21-49. doi:10.1007/BF00678109
[26] J. Smol, A. Wolfe, J. Birks, M. Douglas, V. Jones, A. Kprjhola, R. Pienitz, et al., “Climate-Driven Regime Shifts in the Biological Communities of Artic Lakes,” PNAS, Vol. 102, No. 12, 2005, pp. 4397-4402. doi:10.1073/pnas.0500245102
[27] J. Smol, “The Power of the Past: Using Sediments to Track the Effects of Multiple Stressors on Lake Ecosystems,” Freshwater Biology, Vol. 55, 2010, pp. 43-59. doi:10.1111/j.1365-2427.2009.02373.x
[28] J. P. Smol, A. P. Wolfe, H. J. B. Birks, M. S. V. Douglas, V. J. Jones, A. Kprjhola, R. Pienitz, K. Ruhland, S. Sorvari, D. Antoniades, S. Brooks, M. Fallu, M. Hughes, B. Keatley, T. Laing, N. Michelutti, L. Nazarova, S. Nyman, A. Paterson, B. Perren, R. Quinlan, M. Rautio, E. Talbot, S. Siitonen, N. Solovieva and J. Weckstrom, “Climate-Driven Regime Shifts in the Biological Communities of Artic Lakes,” PNAS, Vol. 102, No. 12, 2005, pp. 4397-4402. doi:10.1073/pnas.0500245102
[29] J. Smol and M. Douglas, “Crossing the Final Ecological Threshold in High Arctic Ponds,” PNAS, Vol. 104, No. 30, 2007, pp. 12395-12397. doi:10.1073/pnas.0702777104
[30] J. Alefs and J. Muller, “Differences in the Eutrophication Dynamics of Ammersee and Starnberger, Reflected by the Diatom Succession in Varve-Dated Sediments,” Journal of Paleolimnology, Vol. 21, No. 4, 1999, pp. 395-407. doi:10.1023/A:1008098118867
[31] J. Catalan, S. Pla, M. Rierradevall, et al., “Lake Redo Ecosystem Response to an Increasing Warming in the Pyrenees during the Twentieth Century,” Journal of Paleolimnology, Vol. 28, No. 1, 2002, pp. 129-145. doi:10.1023/A:1020380104031
[32] S. Fritz, J. Kingston and D. Engstrom, “Quantitattive Trophic Reconstruction from Sedimentary Diatom Assemblages: A Cautionary Tale,” Freshwater Biology, Vol. 30, No. 1, 1993, pp. 1-23. doi:10.1111/j.1365-2427.1993.tb00784.x
[33] M. Harris, B. Cumming and J. Smol, “Assessment of Recent Environmental Changes in New Brunswick (Canada) Lakes Based on Paleolimnological Shifts in Diatom Species Assemblages,” Canadian Journal of Botany, Vol. 84, No. 1, 2006, pp. 151-163. doi:10.1139/b05-157
[34] A. Marchetto, A. Lami, S. Musazzi, J. Massaferro, L. Langone and P. Guilizzoni, “Lake Maggiore (N. Italy) Trophic History: Fossil Diatom, Plant Pigments, and Limnological Data,” Quaternary International, Vol. 113, No. 1, 2004, pp. 97-110. doi:10.1016/S1040-6182(03)00082-X
[35] K. Ruhland, A. Paterson and J. Smol, “Hemispheric-Scale Patterns of Climate-Related Shifts in Planktonic Diatoms from North America and European Lakes,” Global Change Biology, Vol. 14, 2008, pp. 2740-2754.
[36] K. Ruhland, A. Priesnitz and J. Smol, “Paleolimnological Evidence from Diatoms for Recent Environmental Changes in 50 Lakes Across the Canadian Artic Treeline,” Arctic, Antarctic, and Alpine Research, Vol. 35, No. 1, 2003, pp. 110-123.
[37] S. Sorvari, A. Korhola and R. Thompson, “Lake Diatom Response to Recent Artic Warming in Finnish Lapland,” Global Change Biology, Vol. 8, No. 2, 2002, pp. 171-181. doi:10.1046/j.1365-2486.2002.00463.x
[38] T. Ingleton and A. McMinn, “Thermal Plume Effects: A Multi-Disciplinary Approach for Assessingeffects of Thermal Pollution on Estuaries Using Benthic Diatoms and Satellite Imagery,” Estuarine, Coastal and Shelf Science. Vol. 99, 2012, pp. 132-144. doi:10.1016/j.ecss.2011.12.024
[39] R. Ricklefs and D. Schluter, “Species Diversity in Ecological Communities,” University of Chicago press, Chicago, 1993.
[40] K. M. Manoylov, “Ecological Strategies of Benthic Diatoms for Nutrient Competition,” Ph.D. Dissertation, Michigan State University, East Lansing, 2005.
[41] J. Smol and E. Stoermer, “The Diatoms: Applications for the Environmental and Earth Sciences,” 2nd Edition, Cambridge University Press, Cambridge, 2010. doi:10.1017/CBO9780511763175
[42] B. J. Cardinale, D. M. Bennett, C. E. Nelson and K. Gross, “Does Productivity Drive Diversity or Vice versa? A Test of the Multivariate Productivity-Diversity Hypothesis in Streams,” Ecology, Vol. 90, No. 5, 2009, pp.1227-1241. doi:10.1890/08-1038.1
[43] J. D. Wehr and R. G. Sheath, “Freshwater Algae of North America Ecology and Classification,” Academic Press, San Diego, 2003.
[44] L. Bahls, R. Bukantis and S. Tralles, “Benchmark Biology of Montana Reference Streams,” Water Quality Bureau, Department of Health and Environmental Sciences, Helena, Montana, 1992.
[45] D. M. DeNicola, “Periphyton Responses to Temperature at Different Ecological Levels,” Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, New York, 1996, pp. 150-176.
[46] D. S. Fisher, J. L. Steiner, D. M. Endale, et al., “The Relationship of Land use Practices to Surface Water Quality in the Upper Oconee Watershed of Georgia,” Forest Ecology and Management, Vol. 128, No. 1-2, 2000, pp. 39-48. doi:10.1016/S0378-1127(99)00270-4
[47] D. S. Bachoon, T. W. Nichols, K. M. Manoylov and D. R. Oetter, “Assessment of Faecal Pollution and Relative Alga Abundances in Lakes Oconee and Sinclair, Georgia, USA,” Lakes and Reservoirs: Research and Management, Vol. 14, No. 2, 2009, pp. 139-149. doi:10.1111/j.1440-1770.2009.00396.x
[48] K. Geyer, M. Weilbacher and K. M. Manoylov, “Response of Algal Community to Anthropogenically-induced Temperature Differences in Lake Sinclair, Baldwin County,” Georgia College and State University, Milledgeville, 2009.
[49] APHA, “Standard Methods for Examination of Water and Wastewater,” Washington DC, American Public Health Association, Washingotn DC, 1998.
[50] R. J. Stevenson and L. L. Bahls., “Periphyton Protocols,” In: M. T. Barbour, J. Gerritsen and B. D. Snyder, Eds., Rapid Bioassessment Protocols for Use in Wadeable Streams and Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, 2nd Edition. EPA 841-B-99-002 United States Environmental Protection Agency, Washington, 1999, pp. 6-1 to 6-22.
[51] R. Patrick and C. W. Reimer, “The Diatoms of the United States,” Vol. 1. Monographs of the Academy of Natural Sciences of Philadelphia, Vol. 1, No. 13, 1966, pp. 1-688.
[52] R. Patrick and C. W. Reimer, “The Diatoms of the United States. Vol. 2, Part 1,” Monographs of the Academy of Natural Sciences of Philadelphia, Vol. 2, No. 13, 1975, pp. 1-213.
[53] K. Krammer and H. Lange-Bertalot, “Bacillariophyceae. 1. Teil: Naviculaceae,” In: H. Ettl, J. Gerloff, H. Heynig, and D. Mollenhauer, Eds., Susswasserflora von Mitteleuropa, Gustav Fisher Verlag, Jena, 1986, pp.1-876.
[54] K. Krammer and H. Lange-Bertalot, “Bacillariophyceae. 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae,” In: H. Ettl, H. Gerloff, H. Heynig and D. Mollenhauer, Eds., Susswasserflora von Mitteleuropa, Gustav Fisher Verlag, Stuttgart, 1988, pp. 1-596.
[55] K. Krammer and H. Lange-Bertalot, “Bacillariophyceae. 3. Teil: Centrales, Fragilariaceae, Eunotiaceae,” In: H. Ettl, J. Gerloff, H. Heynig and D. Mollenhauer, Eds., Susswasserflora von Mitteleuropa, Gustav Fisher Verlag, Stuttgart, 1991, pp. 1-576.
[56] K. Krammer and H. Lange-Bertalot, “Bacillariophyceae. 4. Teil: Achnanthaceae. Kritische Erganzungen zu Navicula (Lineolatae) und Gomphonema,” In: H. Ettl, G. Gartner, J. Gerloff, H. Heynig and D. Mollenhauer, Eds., Susswasserflora von Mitteleuropa, Gustav Fisher Verlag, Stuttgart, 1991, pp.1-437.
[57] E. C. Pielou, “An Introduction to Mathematical Ecology,” John Wiley and Sons, New York, 1969.
[58] C. E. Shannon and W. Weaver, “The Mathematical Theory of Communication,” University of Illinois Press, Urbana, 1963.
[59] R. Jongman, C. Ter Brakk and O. Van Tongeren, “Data Analysis in Community and Landscape Ecology,” Cambridge University Press. Cambridge, 1995. doi:10.1017/CBO9780511525575
[60] D. F. Charles, C. Knowles and R. S. Davis, “Protocols for the Analysis of Algal Samples Collected as Part of the U. S. Geological Survey National Water-Quality Assessment Program. Report No. 02-06,” The Academy of Natural Sciences of Philadelphia, Patrick Center for Environmental Research-Phycology Section, Philadelphia, 2002.
[61] L. Wilkinson, “Systat: The System for Statistics,” Evanston Illinois, 1989, 822 pages.
[62] K. Manoylov and R. Stevenson, “Cymbella excisa Kutz. in Different Nutrient Conditions,” Proceedings of the 17th International Diatom Symposium, Ottawa, 25-31 August 2004, pp. 31-45.

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.