Physico-Mechanical Responses of Polypropylene-CaCO3 Composite


This study examines some physical and mechanical characteristics of polypropylene (PP) and calcium trioxocarbonate IV (CaCO3) composites prepared by melt blending. The mechanical (tensile strength and impact energy resistance) and physical (density and water absorption capacity) properties of the composites were evaluated using 0% - 40% of the filler. The results showed that 20%-CaCO3 addition improved the ultimate tensile stress by 58%, and the UTS is 84% better when 25%-CaCO3 addition is made while the impact resistance decline by 8 and 12% respectively at these two compositions. In addition, the density only differ from that of pure PP at 25% CaCO3 addition by 18% increment, however, water absorption increased by 400% at 10%-CaCO3 addition.

Share and Cite:

S. Adeosun, M. Usman, W. Ayoola and M. Bodud, "Physico-Mechanical Responses of Polypropylene-CaCO3 Composite," Journal of Minerals and Materials Characterization and Engineering, Vol. 1 No. 4, 2013, pp. 145-152. doi: 10.4236/jmmce.2013.14025.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] K. Dey, N. Sharmin, R. A. Khan, S. Nahar, A. J. Parsons, and C. D. Rudd, “Effect of Iron Phosphate Glass on the Physico-Mechanical Properties of Jute Fabric-Reinforced Polypropylene-Based Composites,” Journal of Thermoplastic Composite Materials, Vol. 24, No. 5, 2011, pp. 695-711.
[2] K. Saminathan, P. Selvakumar and N. Bhatnagar, “Fracture Studies of Polypropylene/Nanoclay Composite. Part I: Effect of Loading Rates on Essential Work of Fracture,” Polymer Testing, Vol. 27, No. 3, 2008, pp. 296-307. doi:10.1016/j.polymertesting.2007.11.008
[3] Y. Zhao and H. X. Huang, “Dynamic Rheology and Microstructure of Polypropylene/Clay Nanocomposites Prepared under Sc-CO2 by Melt Compounding,” Polymer Testing, Vol. 27, No. 1, 2008, pp. 129-134. doi:10.1016/j.polymertesting.2007.11.006
[4] T. H. Zhou, W. H. Ruan, Y. L. Mai, M. Z. Rong and M. Q. Zhang, “Performance Improvement of Nano-Silica/ Polypropylene Composites through In-Situ Cross-Linking Approach,” Composite Science and Technology, Vol. 68, No. 14, 2008, pp. 2858-2863. doi:10.1016/j.compscitech.2007.10.002
[5] J. H. Chen, M. Z. Rong, W. H. Ruan and M. Q. Zhang, “Interfacial Enhancement of Nano-SiO2/Polypropylene,” Composite Science and Technology, Vol. 69, No. 2, 2009, pp. 252-259.
[6] N. Muksing, M. Nithitanakul, B. P. Grady and R. Magaraphan, “Melt Rheology and Extrudate Swell of Organo Bentonite-Filled Polypropylene Nanocomposites,” Polymer Testing, Vol. 27, No. 4, 2008, pp. 470-479. doi:10.1016/j.polymertesting.2008.01.008
[7] V. Khunova, J. Hurst, I. Janigova and V. Smatko, “Plasma Treatment of Particulate Polymer Composites for Analyses by Scanning Electron Microscopy: II. A Study of Highly Filled Polypropylene/Calcium Carbonate Composites,” Polymer Testing, Vol. 18, No. 7, 1999, pp. 501-509.
[8] W. C. J. Zuiderduin, C. Westzaan, J. Huetink and R. J. Gaymans, “Toughening of Polypropylene with Calcium Carbonate Particles,” Polymer, Vol. 44, No. 1, 2003, pp. 261-275.
[9] Y. S. Thio, A. S. Argon, R. E. Cohen and M. Weinberg, “Toughening of Isoactic Polypropylene with CaCO3 Particles,” Polymer, Vol. 43, No. 13, 2002, pp. 3661-3674.
[10] Z. Demjen, B. Pukanszky and J. Nagy, “Evaluation of Interfacial Interaction in Polypropylene/Surface Treated CaCO3 Composites,” Composites A: Applied science and manufacturing, Vol. 29, No. 3, 1998, pp. 323-329.
[11] G. Guerrica-Echevarria, J. I. Eguiazabal and J. Nazabal, “Influence of Moulding Conditions and Talc Content on the Properties of Polypropylene Composites,” European Polymer Journal, Vol. 34, No. 8, 1998, pp. 1213-1219. doi:10.1016/S0014-3057(97)00228-0
[12] T. Xu, H. Lei and C. S. Xie, “Investigation of Impact Fracture Process with Particle-Filled Polymer Materials by Acoustic Emission,” Polymer Testing, Vol. 21, No. 3, 2002, pp. 319-324.
[13] K. J. Kim and J. L. White, “Particle Orientation in Talc-Filled Thermoplastics Extruded through Cylindrical, Rec- tangular and Annular Dies,” Journal of Non-Newtonian Fluid Mechanics, Vol. 66, No. 2-3, 1996, p. 257. doi:10.1016/S0377-0257(96)01464-4
[14] M. Y. Ahmed Fuad, J. Mustafah, M. S. Mansor, Z. A. Mohd Ishak and A. K. Mohd Omar, “Thermal Properties of Polypropylene/Rice Husk Ash Composites,” Polymer International, Vol. 38, No. 1, 1995, pp. 33-43.
[15] L. Jilken, G. Malhammar and R. Selden, “The Effect of Mineral Fillers on Impact and Tensile Properties of Polypropylene,” Polymer Testing, Vol. 10, No. 5, 1991, pp. 329-344.
[16] P. Mareri, S. Bastide, N. Binda and A. Crespy, “Mechanical Behaviour of Polypropylene Composites Containing Finer Mineral Filler: Effect of Filler Surface Treatment,” Composite Science and Technology, Vol. 58, No. 5, 1998, pp. 747-752. doi:10.1016/S0266-3538(97)00156-5
[17] A. M. Riley, C. D. Paynter, P. M. McGenity and J. M. Adams, “Factors Affecting the Impact Properties of Mineral Filled Polypropylene,” Plastics and Rubber Process- ing and Applications, Vol. 14, No. 2, 1990, pp. 85-93.
[18] B. M. Sole and A. Ball, “On the Abrasive Wear Behaviour of Mineral Filled Polypropylene,” Tribology International, Vol. 29, No. 6, 1996, pp. 457-465. doi:10.1016/0301-679X(95)00098-O
[19] J. Gassan and A. K. Bledzki, “The Influence of Fiber-Surface Treatment on the Mechanical Properties of Jute-Polypropylene Composites,” Composites A: Applied Science and Manufacturing, Vol. 28, No. 12, 1997, pp. 1001-1005.
[20] N. E. Zafeiropoulos, D. R. Williams, C. A. Baillie and F. L. Matthews, “Engineering and Characterization of the Interface of Flax Fibre/Polypropylene Composite Materials. Part I: Development and Investigation of Surface Treatments,” Composites A: Applied Science and Manufacturing, Vol. 33, No. 8, 2002, pp. 1083-1093.
[21] Y. W. Leong, M. B. Abu Bakar, Z. A. Mohd Ishak and A. Ariffin, “Effects of Filler Treatments on the Mechanical, Flow, Thermal, and Morphological Properties of Talc and Calcium Carbonate Filled Polypropylene Hybrid Composites,” Journal of Applied Polymer Science, Vol. 98, 2005, pp. 413-426.
[22] Y. W. Leong, M. B. Abu Bakar, Z. A. Mohd Ishak, A. Ariffin and B. Pukanszky, “Comparison of the Mechanical Properties and Interfacial Interactions between Talc, Kaolin, and Calcium Carbonate Filled Polypropylene Composites,” Journal of Applied Polymer Science, Vol. 91, 2004, pp. 3315-3326.
[23] J. Zhang, B. Han, N. Zhou, J. Fang, J. Wu, Z. Ma, H. Mo and J. Shen, “Preparation and Characterization of Nano/ Micro-Calcium Carbonate Particles/Polypropylene Composites,” Journal of Applied Polymer Science, Vol. 119, No. 6, 2011, pp. 3560-3565. doi:10.1002/app.33037
[24] S. K. Najafi, A. Bahra and M. Abdouss, “Effect of Oxidized Polypropylene as a New Compatibilizer on the Water Absorption and Mechanical Properties of Wood Flour-Polypropylene Composites,” Journal of Applied Polymer Science, Vol. 119, No. 1, 2011, pp. 438-442. doi:10.1002/app.32618
[25] I. I. Rubin, “Handbook of Plastic Materials and Technology,” New York, Wiley, 1990, p. 693.
[26] C. Chan, J. Wu, J. X. Li and Y. K. Cheung, “Polypropylene/Calcium Carbonate Nanocomposites,” Polymer, Vol. 43, No. 10, 2002, pp. 2981-2992. doi:10.1016/S0032-3861(02)00120-9
[27] W. C. Wake, “Fillers for Plastics,” Plastics Institute, 1971.
[28] L. E. Nielsen, “Mechanical Properties of Polymers and Composites,” 2nd Edition, Marcel Dekker, New York, 1994.
[29] T. T. L. Doan, S. L. Gao and E. Mader, “Jute/Polypropylene Composites; Effect of Matrix Modification,” Com- posite Science and Technology, Vol. 66, No. 7-8, 2006, pp. 952-963.
[30] H. D. Rozman, G. B. Peng and Z. A. Mohd Ishak, “The Effect of Compounding Technique on the Mechanical Properties of Oil Palm Empty Fruit Bunch-Polypropylene Composite,” Journal of Applied Polymer Science, Vol. 70, No. 13, 1998, pp. 2647-2655.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.