An Arbitrated Quantum Signature Scheme Based on Chaotic Quantum Encryption Algorithm

Abstract Full-Text HTML Download Download as PDF (Size:184KB) PP. 83-88
DOI: 10.4236/jmp.2013.45B014    3,537 Downloads   4,893 Views   Citations


An arbitrated quantum signature (AQS) scheme is demonstrated via the improved quantum chaotic encryption algorithm with the quantum one-time pad based on chaotic operation string. In this scheme, the signatory signs the message and the receiver verifies the signature's validity with the aid of the arbitrator who plays a crucial role when a dispute arises. Analysis shows that the signature can neither be forged nor disavowed by the malicious attacker.

Cite this paper

Y. Guo, J. Xie, J. Li and M. Ho Lee, "An Arbitrated Quantum Signature Scheme Based on Chaotic Quantum Encryption Algorithm," Journal of Modern Physics, Vol. 4 No. 5B, 2013, pp. 83-88. doi: 10.4236/jmp.2013.45B014.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] M. Nielsen and I. Chuang, “Quantum computation and quantum information,” Cambridge University Press, Cambridge, 2000.
[2] G. Zeng and C. H. Keitel, “Arbi-trated Quantum-Signature Scheme,” Physical Review A, Vol. 65, No. 4, 2002, 04231 2. doi:10.1103/PhysRevA.65.042312
[3] G. H. Zeng, “Reply to ‘Comment on Arbitrated Quantum-Signature Scheme’,” Physical Review A, Vol. 78, No. 1, 2008, 016301. doi:10.1103/PhysRevA.78.016301
[4] D. Gottesman and I. Chuang, arXiv:quant-ph/0105031v2.
[5] P. O. Boykin and V. Roychowdhury, “Optimal Encryption of Quantum Bits,” Physical Review A, Vol. 67, No. 4, 2003, 042317 . doi:10.1103/PhysRevA.67.042317
[6] G. Zou and D. Qiu, “Security Analysis and Improvements of Ar-bitrated Quantum Signature Schemes,” Physical Review A, Vol. 82, No. 4, 2010, 042325. doi:10.1103/PhysRevA.82.042325
[7] Q. Li, W. H. Chan and D. Y. Long, “Arbitrated Quantum Signature Scheme Using Bell States,” Physical Review A, Vol. 79. No. 5, 2009, 054307. doi:10.1103/PhysRevA.79.054307
[8] T. Hwang, Y. Luo and S. Chong, “Comment on ‘Security Analysis and Improvements of Arbitrated Quantum Signature Schemes’,” Physical Review A, Vol. 85, No.5, 2012, 056301. doi:10.1103/PhysRevA.85.056301
[9] Q. Y. Cai, “The ‘Ping-Pang’ Protocol Can Be Attacked without Eavesdropping,” Physical Review letters, Vol. 91, 2003, 109801. doi:10.1103/PhysRevLett.91.109801
[10] A. K. Ekert, “Quantum Cryptography Based on Bell's Theorem,” Physical Review Letters, Vol. 67, No. 6, 1991, pp. 661-663. doi:10.1103/PhysRevLett.67.661
[11] C. H. Bennett, “Quantum Cryptography Using Any Two Nonorthogonal,” Physical Review Letters, Vol. 68, 1992, pp. 3121-3124. doi:10.1103/PhysRevLett.68.3121
[12] S. K. Chong, Y. P. Luo and T. Hwang, “On ‘Arbitrated Quantum Signature of Classical Messages Against Collective Amplitude Damping Noise’,” Optics Communications, Vol. 284, No. 3, 2011, pp. 893-895. doi:10.1016/j.optcom.2010.09.080
[13] J. W. Choi, K. Y. Chang and D. Hong, “Security Problem on Arbitrated Quantum Signature Schemes,” Physical Review A, Vol. 84. No. 6, 2011, 062330. 84, 062330. doi:10.1103/PhysRevA.84.062330.
[14] F. Gao, S.-J. Qin, F.-Z. Guo and Q.-Y. Wen, “Cryptanalysis of the Arbitrated Quantum Signature Protocols,” Physical Review A, Vol. 84, 2011, 022344. doi:10.1103/PhysRevA.84.022344
[15] M. Curty, D. J. Santos, E. Pierez, and P. Garcia-Fernandez, “Qubit Authentication,” Physical Review A. Vol. 66. No. 2, 2002, 022301. doi:10.1103/PhysRevA.66.022301
[16] L.-M. Duan, M. D. Lukin, J. I. Cirac and P. Zoller, “Long-Distance Quantum Communication with Atomic Ensembles and Linear Optics,” Nature. Vol. 414, 2001, pp. 413-418. doi:10.1038/35106500
[17] H. Buhrman, R. Cleve, J. Watrous and R. de Wolf, “Quantum Fingerprinting,”Physical Review Letters. Vol. 87, 2001, 167902. doi:10.1103/PhysRevLett.87.167902
[18] Q. Li, W. H. Chan and D. Y. Long, “Arbitrated Quantum Signatyre Scheme Using Bell States,” Physical Review A. Vol. 79, 2009, 054307. doi:10.1103/PhysRevA.79.054307
[19] S. Pang and S. Wu, “Comparison of Mixed Quantum States,” Physical Review A, Vol. 84, 2011, 012336. doi:10.1103/PhysRevA.84.012336
[20] M. S. Baptista, “Cryptography With Chaos,”Physics Letters A. Vol. 240. No. 1-2, 1998, pp. 50-54. doi: 10.1016/S0375-9601(98)00086-3
[21] G. Jakimoski and L. Kocarev, “Circuits and SystemsⅠ: Fundamental Theory and Applications on,” IEEExplore. Vol. 48. No. 2, 2001, pp. 163-169. doi:10.1109/81.904880

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.