Phenomenological and Semi-microscopic Analysis for the Elastic Scattering of Protons from 12C Nuclei at Different Energies

DOI: 10.4236/jmp.2013.45B013   PDF   HTML     3,947 Downloads   5,270 Views   Citations


Analysis of the elastic scattering of protons from 12C nuclei had been performed within the framework of both the optical model and single folding model at different proton energies; 17, 30.3, 40, 49.48 and 61.4 MeV. We have obtained the global potential parameters which could fairly reproduce the experimental data for p+12C elastic scattering at the aforementioned energies. The radial and energy dependence of the real and imaginary parts of the potential were calculated. Good agreement between experimental data and theoretical predictions in the whole angular range was obtained using both phenomenological approach (Optical Model), and semi-microscopic approach (Single Folding). In single folding calculations, the real part of the potential was calculated from a more fundamental basis by the folding method in which the NN interaction VNN(r), is folded into the density of the target nuclei and supplemented with a phenomenological imaginary potential. The obtained normalization factor Nr is in the range of 0.75 - 0.9.

Share and Cite:

Sh. Hamada and N. Amangeldi, "Phenomenological and Semi-microscopic Analysis for the Elastic Scattering of Protons from 12C Nuclei at Different Energies," Journal of Modern Physics, Vol. 4 No. 5B, 2013, pp. 78-82. doi: 10.4236/jmp.2013.45B013.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] H. O. Mayer, P. Schwandt, G. L. Moake and P. P. Singh, “Elastic Scattering of 200 Mev Polarized Protons from 12,13C and the Optical Potential,” Physical Review C ,Vol. 23, 1981, pp. 616-622. doi:10.1103/PhysRevC.23.616
[2] M. Jaminon, C. Mahaux and P. Rochus, “Optical-Model Potential in a Relativistic Quantum Field Model,” Physical Review C, 1980, Vol. 22, pp. 2027-2042. doi:10.1103/PhysRevC.22.2027
[3] C. Mahaux, Lecture Notes in Physics, Vol. 89, No. 1,1979 .
[4] F. A. Brieva and J. R. Rook, “Nucleon-Nucleus Optical : Nuclear Matter Approach,” Nuclear Physics A, Vol. 297, No. 2, 1977, pp. 299-316. doi:10.1016/0375-9474(77)90322-0
[5] F. A. Brieva and J. R. Rook, “Nucleon-Nucleus Optical Model Potential:(Ⅱ).Finite Nuclei, ” Nuclear Physics A Vol. 291, 1977, pp. 317-341. doi:10.1016/0375-9474(77)90323-2
[6] F. A. Brieva and J. R. Rook, “Nucleon-Nucleus Optical Model Potential:(Ⅲ).the Spin-Orbit Component,” Nuclear Physics A, Vol. 297, No. 2, 1978, pp. 206-230. doi:10.1016/0375-9474(78)90272-5
[7] F. A. Brieva and J. R. Rook, “Microscopic description of nucleon-nucleus elas-tic scattering” Nuclear Physics A, Vol. 307, No. 3,1978, pp. 493-514. doi:10.1016/0375-9474(78)90461-X
[8] L. Ray, G. W. Hoffmann, M. Barlett and J. McGill, “Proton Elastic Scattering from 40,42,44,48Ca at 800 Mev,”Physical Review C, Vol. 23, 1981, pp. 828-837. doi:10.1103/PhysRevC.23.828
[9] R. D. Amado, J. A. McNeil and D. A Sparrow, “Two-Step Processes in In-termediate Energy Hadron-Nucleus Scattering,” Physical Review C. Vol. 23, 1981, 2186-2197. doi:10.1103/PhysRevC.23.2186
[10] M. Rashan, Eur. Phys. J. A, Vol. 16, 2003, p. 371. doi:10.1140/epja/i2001-10270-4
[11] B. Q. Chen and A. D. Mackellar, “Proton-Nucleus Scattering Based on the Relativistic Brueckner-Hartree-Fock Model,” Physical Review C., Vol. 52, 1995, pp. 878-889.
[12] F. Sammarruca, E. J. Stephenson and K. Jiang, “Microscopic Calculations of Medium Effects for 200-MeV” Physical Review C., Vol. 60, 1999, 064610 .
[13] R. Crespo, R. C. Johnson and J. A. Tostevin, “Mean Field Calculations of Nuc-leonnucleus Scattering,” Physical Review C ,Vol. 53, 1996, pp. 3022-3031. doi:10.1103/PhysRevC.53.3022
[14] I. E. Dayton and G. Schrank, “Elastic Scattering of 17-Mev Protons by Nuclei,” Physical Review Online Archive., Vol. 101, No. 4, 1956, pp. 1358-1367. doi:10.1103/PhysRev.101.1358
[15] B. W. Ridley and J. F. Turner, “Optical Model Studies of Proton Scattering at 30 MeV:(Ⅰ).Different Cross Sections for Elastic Scattering of Protons at 30.3 MeV,”Nuclear Physics,Vol. 58, 1964, pp. 497-508. doi:10.1016/0029-5582(64)90561-9
[16] L. N. Blumberg, E. E. Gross, A. van der Woude, A. Zucker and R. H. Bassel, Physical Review, Vol. 147, No. 3, pp. 812-825
[17] J. A. Fannon, E. J. Burge, D. A. Smith and N. K. Ganguly, “Elastic and inelastic of 50 MeV Protons by 12C and 16O,” Nuclear Physics A, Vol. 97, 1967, pp. 263-281.
[18] C. B. Fulmer, J. B. Ball, A. Scott and M. L. Whiten, “Elastic Scattering of 61.4-MeV Protons,” Physical Review Online Archive., Vol. 181. No. 1, 1969, pp. 1565- 1579. doi:10.1103/PhysRev.181.1565
[19] M. E. Brandan and G. R. Satchler, “Folding Model Analysis Of 12,13C+12C and 16O+12C Scattering at Intermediate Energies Using A Densi-ty-Dependent Interaction,” Nuclear Physics A, Vol. 487. No. 2, 1988, pp.477- 492. doi: 10.1016/0375-9474(88)90625-2
[20] M. El-Azab Farid and G. R. Satchler, “A Density-Dependent Interaction in the Folding Model for Heavyion Potentials,” Nuclear Physics A, Vol. 438. No. 2, 1985, pp. 525-535. doi:10.1016/0375-9474(85)90391-4
[21] L. Ray, G. W. Hoff-mann and W. R. Coker, “Nonrelativistic and Relativistic De-scriptions of Proton-Nucleus Scattering,” Physics Reports, Vol. 212. No. 5, 1992, pp.223- 328. doi:10.1016/0370-1573(92)90156-T
[22] L. Ray, “Neutron Isotopic Density Differences Deduced from 0.8 GeV Polarized Proton Elastic Scattering,” Physical Review C, Vol. 19, 1979, pp. 1855-1872. doi:10.1103/PhysRevC.19.1855
[23] L. Ray, “Pro-ton-Nucleus Total Cross Sections in the Intermediate Energy Range,” Physical Review C, Vol. 20, 1979, pp. 1857-1872. doi:10.1103/PhysRevC.20.1857
[24] L. Ray G. W. Hoffmann and R. M. Thalar, “Coulomb Interaction in Multiple Scattering Theory,” Physical Review C, Vol. 22, 1980, pp. 1454-1467. doi:10.1103/PhysRevC.22.1454
[25] E. H. Esmail and M. A. Allam, Acta Physical Polonicab, Vol. 39, 2008, p. 159.
[26] J. E. Poling, E. Norbeck and R. R. Carlson, “Elastic Scattering of Lithium By 9Be,10B,12C,13C,16O,and 28Si from 4 to 63 MeV,” Physical Review C, Vol. 13, 1976, pp. 648-660. doi:10.1103/PhysRevC.13.648
[27] Z. Majka, H. J. Jils and H. Rebel, Z. Physics A., Vol. 288, 1978, p.139.
[28] Perey F. // SPIVAL an optical model code unpublished.
[29] J. Cook, Computer Physics Communications, Vol. 25,1982.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.