Acousto-Resonance Spectroscopy of Nonlinear-Optical Crystals in Process of Laser Frequency Conversion


Dependence of the periodically poled nonlinear-optical lithium niobate (PPLN) crystal temperature on laser power in the course of laser frequency conversion was measured using piezoelectric resonance. Crystal’s temperature tuning curves are precisely measured using concept of the equivalent temperature. Both optical absorption and heat transfer coefficients of the crystal are measured employing kinetics of the crystal equivalent temperature.

Share and Cite:

O. A. Ryabushkin, A. V. Konyashkin, D. V. Myasnikov, V. A. Tyrtyshnyy, O. I. Vershinin and A. I. Baranov, "Acousto-Resonance Spectroscopy of Nonlinear-Optical Crystals in Process of Laser Frequency Conversion," Journal of Modern Physics, Vol. 4 No. 5B, 2013, pp. 23-28. doi: 10.4236/jmp.2013.45B005.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] A. V. G. Dmitriev and L. V. Tarasov, “Applied Nonlinear Op-tics,” Fizmatlit, Moscow (in Russian), 2004.
[2] F. Kienle, D. Lin, S.-ul. Alam, et al., “Green-pumped, Picosecond MgO: PPLN Optical Parametric Oscillator,” Journal of the Optical Society of America B, Vol. 29, No. 1, 2012, pp. 144-152. doi:10.1364/JOSAB.29.000144
[3] H. Furuya, A. Morikawa, K. Mizuuchi and K. Yamamoto, “High Beam-Quality Conti-nuous Wave 3W Green- Light Generation in Bulk Periodically Poled MgO: LiNbO3,” Japanese Journal of Applied Physics Part 1, Vol. 45, 2006, pp. 6704-6707. doi:10.1143/JJAP.45.6704
[4] S. C. Kumar, G. K. Samanta and M. Ebrahim-Zadeh, “High-Power, Single-Frequency, Con-tinuous-Wave Second-Harmonic-Generation of Ytterbium Fiber Laser in PPKTP and MgO: sPPLT,” Optics Express, Vol. 17, No. 16, 2009, pp. 13711-13726. doi:10.1364/OE.17.013711
[5] S. C. Kumar, G. K. Samanta, K. Devi and M. Ebrahim- Zadeh, “High-Efficiency, Multicrystal, Single-Pass, Continuous-Wave Second Harmonic Generation,” Optics Express, Vol. 19, No. 12, 2011, pp. 1152-1169. doi:10.1364/OE.19.011152
[6] V. P. Gapontsev, V. A. Tyr-tyshnyy, O. I. Vershinin, B. L. Davydov and D. A. Oulianov, “Third Harmonic Fre- quency Generation by Type-I Critically Phase-Matched LiB3O5 Crystal By Means of Optically Active Quartz Crystal,” Optics Express, Vol. 21, No. 3, 2013, pp. 3715-3720. doi:10.1364/OE.21.003715
[7] H. Yoshida, H. Fujita, M. Nakatsuka, et al., “Dependences of Laser-Induced Bulk Damage Threshold and Crack Patterns in Several Nonlinear Crystals on Irradiation Direction,” Japanese Journal of Applied Physics, Vol. 45, No. 2a, 2006, pp. 766-769. doi:10.1143/JJAP.45.766
[8] A. Hildenbrand, F. R. Wagner, H. Akhouayri, et al, “La- ser-Induced Damage Investigation at 1064 nm in KTiOPO4 crystals and its analogy with RbTiOPO4,” Applied Optics, Vol. 48, No. 21, 2009, pp. 4263-4269. doi:10.1364/AO.48.004263
[9] A. V. Konyashkin, V. A. Doronkin, V. A. Tyrtyshnyy, et al., “Resonant Acoustic Calo-rimetry of the Interaction of Laser Radiaiton with Nonli-near-Optical Crystals,” 2009 IEEE International Ultrasonic Symposium Proceedings, 2009, pp. 2045-2048. doi:10.1109/ULTSYM.2009.5441994
[10] R. A. Theerthan, B. Menaert, B. Boulanger and M. Maglione, “Linking Ionic Con-ductivity and Piezoelectric Resonance in KTiOPO4,” Physical Review B, Vol. 85, 2012, pp. 024103(1-8).
[11] F. Bezancon, J. Mangin, P. Stimer, M. Maglione, “Accurate Determination of Weak Optical Absorption of Piezoelectric Crystals Used as Capacitive Massive Bolometers,” IEEE Journal of Quantum Electronics, Vol. 37, No. 11, 2001, pp. 1396-1400. doi:10.1109/3.958353
[12] O. A. Ryabushkin, D.V. Myasni-kov, A. V. Konyashkin and V. A. Tyrtyshnyy, “Equivalent Temperature of Nonlinearoptical Crystals Interacting with Laser Radiation,” Journal of the European Optical Society-Rapid publications, Vol. 6, 2011, pp. 11032(1-8).
[13] O. A. Rya-bushkin and D. V. Myasnikov, “Experimental Determination and The Theoretical Model of An Equivalent Temperature of Nonlinear Optical Crystals Interacting With High-Power Laser Radiation,” Quantum Electron, Vol. 42, No. 6, 2012, pp. 539-544. doi:10.1070/QE2012v042n06ABEH014657
[14] ISO 11551: test method for absorptance of optical laser components / In-ternational Organization for Standartiza- tion. Geneva Switzer-land, 2003.

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.