Share This Article:

Methyl Termination and ATR-FTIR Evaluation of n-Si(111) Electrode towards Photoelectrochemical Cell Fabrication

Abstract Full-Text HTML Download Download as PDF (Size:528KB) PP. 169-171
DOI: 10.4236/jsemat.2013.33022    2,670 Downloads   4,166 Views  

ABSTRACT

We confirmed methyl termination on n-Si(111) surface by ATR-FTIR measurement, which was fabricated by a photo chloro-reaction and its methylation. The coverage of the methylation was about 63.7%, and the surface was not re-terminated by hydrogen. Photoelectrochemical properties of the n-Si(111) were measured as an electrode for a photoelectrochemical cell, and an onset potential obtaining photocurrent for the methyl terminated n-Si(111) electrode was observed as negative shift at 70 mV comparing with that of the hydrogen terminated n-Si(111) electrode. Therefore, the negative shift would be expected for improving open circuit voltage towards solar cell.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

T. Ohtake, "Methyl Termination and ATR-FTIR Evaluation of n-Si(111) Electrode towards Photoelectrochemical Cell Fabrication," Journal of Surface Engineered Materials and Advanced Technology, Vol. 3 No. 3, 2013, pp. 169-171. doi: 10.4236/jsemat.2013.33022.

References

[1] K. L. Chopra, P. D. Paulson and V. Dutta, “Thin-Film Solar Cells: An Overview,” Progress in Photovoltaics, Vol. 12, No. 2-3, 2004, pp. 69-92. doi:10.1002/pip.541
[2] A. Goetzberger, C. Hebling and H. W. Schock, “Photovoltaic Materials, History, Status and Outlook,” Materials Science and Engineering: R: Reports, Vol. 40, No. 1, 2003, pp. 1-46. doi:10.1016/S0927-796X(02)00092-X
[3] M. R. Linford, and C. E. D. Chidsey, “Alkyl Monolayers Covalently Bonded to Silicon Surfaces,” Journal of the American Chemical Society, Vol. 115, No. 26, 1993, pp. 12631-12632. doi:10.1021/ja00079a071
[4] M. R. Inford, P. Fenter, P. M. Eisenberger and C. E. D. Chidsey, “Alkyl Monolayers on Silicon Prepared from 1-Alkenes and Hydrogen-Terminated Silicon,” Journal of the American Chemical Society, Vol. 117, No. 11, 1995, pp. 3145-3155. doi:10.1021/ja00116a019
[5] A. Bansal, X. L. Li, I. Lauermann, N. S. Lewis, S. I. Yi and W. H. Weinberg, “Alkylation of Si Surfaces Using a Two-Step Halogenation/Grignard Route,” Journal of the American Chemical Society, Vol. 118, No. 30, 1996, pp. 7225-7226. doi:10.1021/ja960348n
[6] J. M. Buriak, “Organometallic Chemistry on Silicon Surfaces: Formation of Functional Monolayers Bound through Si-C Bonds,” Chemical Communications, No. 12, 1999, pp. 1051-1060. doi:10.1039/a900108e
[7] J. M. Buriak, “Organometallic Chemistry on Silicon and Germanium Surfaces,” Chemical Reviews, Vol. 102, No. 5, 2002, pp. 1271-1308. doi:10.1021/cr000064s
[8] D. D. M. Wayner, and R. A. Wolkow, “Organic Modification of Hydrogen Terminated Silicon Surfaces,” Journal of the Chemical Society, Perkin Transactions 2, No. 1, 2002, pp. 23-24.
[9] T. Strother, W. Cai, X. S. Zhao, R. J. Hamers, and L. M. Smith, “Synthesis and Characterization of DNA-Modified Silicon (111) Surfaces,” Journal of the American Chemical Society, Vol. 122, No. 6, 2000, pp. 1205-1209. doi:10.1021/ja9936161
[10] A. Bansal, and N. S. Lewis, “Stabilization of Si Photoanodes in Aqueous Electrolytes through Surface Alkylation,” The Journal of Physical Chemistry B, Vol. 102, No. 21, 1998, pp. 4058-4060. doi:10.1021/jp980679h
[11] W. J. Royea, A. Juang and N. S. Lewis, “Preparation of Air-Stable, Low Recombination Velocity Si(111) Surfaces Through Alkyl Termination,” Applied Physics Letters, Vol. 77, No. 13, 2000, pp. 1988-1990. doi:10.1063/1.1312203
[12] T. Okubo, H. Tsuchiya, M. Sadakata, T. Yasuda and K. Tanaka, “An Organic Functional Group Introduced to Si(111) via Silicon-Carbon Bond: A Liquid-Phase Approach,” Applied Physics Letters, Vol. 171, No. 3-4, 2001, pp. 252-256. doi:10.1016/S0169-4332(00)00759-5
[13] R. L. Cicero, M. R. Linford and C. E. D. Chidsey, “Photoreactivity of Unsaturated Compounds with Hydrogen-erminated Silicon(111),” Langmuir, Vol. 16, No. 13, 2000, pp. 5688-5695. doi:10.1021/la9911990

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.