Supermassive Black Holes, Large Scale Structure and Holography
T. R. Mongan
84 Marin Avenue, Sausalito, USA.
DOI: 10.4236/jmp.2013.47A1006   PDF   HTML     3,538 Downloads   4,691 Views   Citations

Abstract

A holographic analysis of large scale structure in the universe provides an upper bound on the mass of supermassive black holes at the center of large scale structures with matter density varying as as a function of distance r from their center. The upper bound is consistent with two important test cases involving observations of the supermassive black hole with mass times the galactic mass in Sagittarius A* near the center of our Milky Way and the 2 × 109 solar mass black hole in the quasar ULAS J112001.48 + 064124.3 at redshift z = 7.085. It is also consistent with upper bounds on central black hole masses in globular clusters M15, M19 and M22 developed using the Jansky Very Large Array in New Mexico.

Share and Cite:

T. Mongan, "Supermassive Black Holes, Large Scale Structure and Holography," Journal of Modern Physics, Vol. 4 No. 7A, 2013, pp. 50-54. doi: 10.4236/jmp.2013.47A1006.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. Volonteri, Science, Vol. 337, 2012, pp. 544-547. doi:10.1126/science.1220843
[2] T. Mongan, Journal of Modern Physics, Vol. 2, 2011, pp. 1544-1549. doi:10.4236/jmp.2011.212187
[3] R. Bousso, “The Holographic Principle,” Reviews of Modern Physics, Vol. 74, 2002, pp. 825-874. doi:10.1103/RevModPhys.74.825
[4] W. Press and P. Schechter, Astrophysical Journal, Vol. 187, 1974, pp. 425-438. doi:10.1086/152650
[5] M. Abramowicz and P. Fragile, “Foundations of Black Hole Accretion Disk Theory,” 2011, arXiv:1104.5499.
[6] P. McMillan, “Mass Models of the Milky Way,” 2011, arXiv:1102.4340.
[7] A. Ghez, et al., “Measuring Distance and Properties of the Milky Way’s Central Supermassive Black Hole with Stellar Orbits,” 2008, arXiv:0808.2870.
[8] N. McConnell, et al., Nature, Vol. 480, 2011, pp. 215-218. doi:10.1038/nature10636
[9] J. Strader, et al., Astrophysical Journal Letters, Vol. 750, 2012, p. L27. doi:10.1088/2041-8205/750/2/L27
[10] M. Marks and P. Kroupa, Monthly Notices of the Royal Astronomical Society, Vol. 406, 2010, p. 2000.
[11] J. Boyles, et al., Astrophysical Journal, Vol. 742, 2011, p. 51. doi:10.1088/0004-637X/742/1/51
[12] C. Booth and J. Schaye, Monthly Notices of the Royal Astronomical Society, Vol. 412, 2011, pp. 1158-1164. doi:10.1111/j.1365-2966.2011.18203.x
[13] E. Wright, Astronomical Society of the Pacific, Vol. 118, 2006, p. 1711. doi:10.1086/510102
[14] W. Percival, et al., Astrophysical Journal, Vol. 657, 2007, p. 51. doi:10.1086/510772
[15] A. Siemiginowska, et al., Astrophysical Journal, Vol. 657, 2007, p. 145. doi:10.1086/510898
[16] S. Longair, “Galaxy Formation,” Springer-Verlag, Berlin, 1998. doi:10.1007/978-3-662-03571-9
[17] J. Jeans, Philosophical Transactions of the Royal Society of London, Vol. 199, 1902, pp. 1-53.
[18] V. Bromm, “The First Stars and Galaxies—Basic Principles,” In M. De Rossi, et al., Eds., From the First Structures to the Universe Today, 2012, arXiv:1203.3824.
[19] D. Mortlock, et al., Nature, Vol. 474, 2011, p. 616. doi:10.1038/nature10159
[20] V. Bromm and R. Larson, Annual Review of Astronomy and Astrophysics, Vol. 42, 2004, pp. 79-118. doi:10.1146/annurev.astro.42.053102.134034
[21] J. Johnson, et al., “Supermassive Seeds for Supermassive Black Holes,” 2012, arXiv:1211.0548.
[22] B. Ryden, “Introduction to Cosmology,” Addison-Wesley, San Francisco, 2003, p. 161.
[23] S. Hofner, “Gravitational Collapse: Jeans Criterion and Free Fall Time,” 2012. http://www.astro.uu.se/~hoefner/astro/teach/apd_files/apd_collapse.pdf
[24] S. Shapiro and M. Shibata, Astrophysical Journal, Vol. 577, 2002, p. 904. doi:10.1086/342246

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.