Share This Article:

Effects of 5-aza-2’-deoxyctidine on the development of porcine parthenogenetic and nuclear transfer embryos

Abstract Full-Text HTML Download Download as PDF (Size:558KB) PP. 31-37
DOI: 10.4236/ns.2013.57A005    3,758 Downloads   5,612 Views   Citations

ABSTRACT

The current study was to investigate whether embryo or fetal fibroblast cells treated with 5-aza-2’-deoxyctidine (5-aza-dC) have a positive effect on the in vitro development of porcine parthenogenetic and cloned embryos. To this end, porcine fetal fibroblast cells were treated with different concentrations (5 nM, 50 nM and 500 nM) of 5-aza-dC for different exposure times (1, 6 and 20 hours), the results showed that DNA methylation in PRE-1 SINE region was gradually reduced over time in cells treated with 5-aza-dC. To determine the effect of 5-aza-dC on in vitro development of porcine activated oocytes, the parthenogenetic embryo was treated with 5-aza- dC. Notably, treatment with 5 nM 5-aza-dC for 1 hour led to a significant improvement in blastocyst development, compared with the control group. The effects of donor cell treatment with 5-aza-dC on porcine cloned embryos development were further examined by treating fetal fibroblast cells with various concentrations (5 nM, 50 nM and 500 nM) of 5-aza-dC for different exposure times (1, 6 and 20 hours). Exposure of cells in 5 nM 5-aza-dC for 1 - 20 hours led to a significant improvement in the percentage of developed blastocysts, while treatment with 500 nM 5-aza-dC did not affect blastocyst development, compared to untreated controls. These findings indicate that treatment of fetal fibro-blast cells with relatively low concentrations of 5-aza-dC for short exposure times improves subsequent blastocyst development of porcine cloned embryos.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Diao, Y. , Naruse, K. , Li, X. , Han, R. , Kim, D. , Lin, T. and Jin, D. (2013) Effects of 5-aza-2’-deoxyctidine on the development of porcine parthenogenetic and nuclear transfer embryos. Natural Science, 5, 31-37. doi: 10.4236/ns.2013.57A005.

References

[1] Li, X., Li, Z., Jouneau, A., Zhou, Q. and Renard, J.P. (2003) Nuclear transfer: Progress and quandaries. Reproductive Biology Endocrinology, 1, 84.
[2] Onishi, A., Iwamoto, M., Akita, T., Mikawa, S., Takeda, K., Awata, T., Hanada, H. and Perry, A.C.F. (2000) Pig cloning by microinjection of fetal fibroblast nuclei. Science, 289, 1188-1190. doi:10.1126/science.289.5482.1188
[3] Polejaeva, I.A., Chen, S.H., Vaught, T.D., Page, R.L., Mullins, J., Ball, S., Dai, Y., Boone, J., Walker, S., Ayares, D.L., Colman, A. and Campbell, K.H. (2000) Cloned pigs produced by nuclear transfer from adult somatic cells. Nature, 407, 86-90. doi:10.1038/35024082
[4] Pratt, S.L., Sherrer, E.S., Reeves D.E., Stice S.L. (2006) Factors influencing the commercialisation of cloning in the pork industry. Society of Reproduction and Fertility supplement, 62, 303-315.
[5] Rideout W.M. 3rd, Eggan, K. and Jaenisch, R., (2001) Nuclear cloning and epigenetic reprogramming of the genome. Science, 293, 1093-1098. doi:10.1126/science.1063206
[6] Kang, Y.K., Koo, D.B., Park, J.S., Choi, Y.H., Kim, H.N., Chang, W.K., Lee, K.K. and Han, Y.M. (2001) Typical demethylation events in cloned pig embryos. Clues on species-specific differences in epigenetic reprogramming of a cloned donor genome. Journal of Biological Chemistry, 276, 39980-39984. doi:10.1074/jbc.M106516200
[7] Wilmut, I., Beaujean, N., De Sousa, P.A., Dinnyes, A., King, T.J., Paterson, L.A., Wells, D.N. and Young, L.E. (2002) Somatic cell nuclear transfer. Nature, 419, 583-587. doi:10.1038/nature01079
[8] Han, Y.M., Kang, Y.K., Koo, D.B. and Lee, K.K. (2003) Nuclear reprogramming of cloned embryos produced in vitro. Theriogenology, 59, 33-44. doi:10.1016/S0093-691X(02)01271-2
[9] Yamanaka, K., Sakatani, M., Kubota, K., Balboula, A.Z., Sawai, K. and Takahashi, M. (2011) Effects of downregulating DNA methyltransferase 1 transcript by RNA interference on DNA methylation status of the satellite I region and in vitro development of bovine somatic cell nuclear transfer embryos. Journal of Reproduction and Development, 57, 393-402. doi:10.1262/jrd.10-181A
[10] Liu, L.M., Liu, Y., Gao, F., Song, G.Q., Wen, J., Guan, J.Y., Yin, Y.P., Ma, X., Tang, B. and Li, Z.Y. (2012) Embryonic Development and Gene Expression of Porcine SCNT Embryos Treated With Sodium Butyrate. Journal of Experimental of Zoology Part B: Molecular and Development Evolution, 318, 224-234 doi:10.1002/jez.b.22440
[11] Enright, B.P., Kubota, C., Yang, X. and Tian, X.C. (2003) Epigenetic Characteristics and development of embryos cloned from donor cells treated by trichostatin A or 5-aza-2’-deoxycytidine. Biology of Reproduction, 69, 896-901. doi:10.1095/biolreprod.103.017954
[12] Enright, B.P., Sung, L.Y., Chang, C.C., Yang, X. and Tian, X.C. (2005) Methylation and acetylation characteristics of cloned bovine embryos from donor cells treated with 5-aza-2’-deoxycytidine. Biology of Reproduction, 72, 944-948. doi:10.1095/biolreprod.104.033225
[13] Ding, X., Wang, Y., Zhang, D., Wang, Y., Guo, Z. and Zhang, Y. (2008) Increased pre-implantation evelopment of cloned bovine embryos treated with 5-aza-2’-deoxy cytidine and trichostatin A. Theriogenology, 70, 622-630. doi:10.1016/j.theriogenology.2008.04.042
[14] Wang, Y.S., Su, J.M., Wang, L.J., Xu, W.B., Quan, F.S., Liu, J. and Zhang, Y. (2011) The effects of 5-aza-2’-deoxycytidine and trichostatin a ongene expression and DNA methylation status in cloned bovine blastocysts. Cell Reprogram, 13, 297-306. doi:10.1089/cell.2010.0098
[15] Lyko, F. and Brown, R. (2005) DNA methyltransferase inhibitors and development of epigenetic cancer therapies. Journal of National Cancer Institute, 97, 1498-1506. doi:10.1093/jnci/dji311
[16] Tian, X.C., Kubota, C., Enright, B. and Yang, X. (2003) Cloning animals by somatic cell nuclear transfer-biological factors. Reproductive Biology and Endocrinology, 1, 98. doi:10.1186/1477-7827-1-98
[17] Naruse, K., Quan, Y.S., Kim, B.C., Lee, J.H., Park, C.S. and Jin, D.I. (2007) Brief exposure to cycloheximide prior to electrical activation improves in vitro blastocyst development of porcine parthenogenetic and reconstruc ted embryos. Theriogenology, 68, 709-716. doi:10.1016/j.theriogenology.2007.05.065
[18] Kang, Y.K., Koo, D.B., Park, J.S., Choi, Y.H., Chung, A.S., Lee, K.K. and Han, Y.M. (2001) Aberrant methylation of donor genome in cloned bovine embryos. Nature Genetics, 28, 173-177. doi:10.1038/88903
[19] Bird, A.P. and Wolffle, A.P. (1999) Methylation-induced repression-belts, braces, and chromatin. Cell, 99, 451-454. doi:10.1016/S0092-8674(00)81532-9
[20] Bestor, T.H. (2000) The DNA methyltransferases of mammals. Human Molecular Genetics, 9, 2395-2402. doi:10.1093/hmg/9.16.2395
[21] Dean, W., Santos, F., Stojkovic, M., Zakhartchenko, V., Walter, J., Wolf, E. and Reik, W. (2001) Conservation of methylation reprogramming in mammalian development: Aberrant reprogramming in cloned embryos. Proceedings of the National Academy of Sciences of the United States of America, 98, 13734-13738. doi:10.1073/pnas.241522698
[22] Kishigami, S., Mizutani, E., Ohta, H., Hikichi, T., Thuan, N.V., Wakayama, S., Bui, H.T. and Wakayama, T. (2006) Significant improvement of mouse cloning technique by treatment with trichostatin A after somatic nuclear transfer. Biochemical and Biophysical Research Communications, 340, 183-189. doi:10.1016/j.bbrc.2005.11.164
[23] Zhang, Y., Li, J., Villemoes, K., Pedersen, A.M., Purup, S. and Vajta, G. (2007) An epigenetic modifier results in improved in vitro blastocyst production after somatic cell nuclear transfer. Cloning and Stem Cells, 9, 357-363. doi:10.1089/clo.2006.0090
[24] Yu, J.N., Xue, C.Y., Wang, X.G., Lin, F., Liu, C.Y., Lu, F.Z. and Liu, H.L. (2009) 5-aza-2’-deoxycytidine (5-AZA-CdR) leads to down-regulation of Dnmt1o and gene expression in preimplantation mouse embryos. Zygote, 17, 137-145. doi:10.1017/S0967199408005169
[25] Tsuji, Y.T., Kato, Y.K. and Tsunoda, Y.K. (2009) The developmental potential of mouse somatic cell nuclear transferred oocytes treated with trichostatin A and 5-aza-2’-deoxycytidine. Zygote, 17, 109-115. doi:10.1017/S0967199408005133

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.