var args = "PaperID=" + 34190 + "&RefererUrl=" + refererrurl + "&DownloadUrl=" + downloadurl; // url = url + "?" + args + "&rand=" + RndNum(4); // // $(this).bind('click', function() { ShowTwo(url)}); // } // }); // } // //获取下载pdf注册的cookie // function getcookie() { // var cookieName = "pdfddcookie"; // var cookieValue = null; //返回cookie的value值 // if (document.cookie != null && document.cookie != '') { // var cookies = document.cookie.split(';'); //将获得的所有cookie切割成数组 // for (var i = 0; i < cookies.length; i++) { // var cookie = cookies[i]; //得到某下标的cookies数组 // if (cookie.substring(0, cookieName.length + 2).trim() == cookieName.trim() + "=") {//如果存在该cookie的话就将cookie的值拿出来 // cookieValue = cookie.substring(cookieName.length + 2, cookie.length); // break // } // } // } // if (cookieValue != "" && cookieValue != null) {//如果存在指定的cookie值 // return false; // } // else { // // return true; // } // } // function ShowTwo(webUrl){ // alert("22"); // $.funkyUI({url:webUrl,css:{width:"600",height:"500"}}); // } //window.onload = pdfdownloadjudge;
JMP> Vol.4 No.7, July 2013
Share This Article:
Cite This Paper >>

Noneuclidean Tessellations and Their Relation to Regge Trajectories

Abstract Full-Text HTML Download Download as PDF (Size:651KB) PP. 950-962
DOI: 10.4236/jmp.2013.47128    3,075 Downloads   4,131 Views  
Author(s)    Leave a comment
B. H. Lavenda

Affiliation(s)

Università degli Studi, Camerino, Italy.

ABSTRACT

The coefficients in the confluent hypergeometric equation specify the Regge trajectories and the degeneracy of the angular momentum states. Bound states are associated with real angular momenta while resonances are characterized by complex angular momenta. With a centrifugal potential, the half-plane is tessellated by crescents. The addition of an electrostatic potential converts it into a hydrogen atom, and the crescents into triangles which may have complex conjugate angles; the angle through which a rotation takes place is accompanied by a stretching. Rather than studying the properties of the wave functions themselves, we study their symmetry groups. A complex angle indicates that the group contains loxodromic elements. Since the domain of such groups is not the disc, hyperbolic plane geometry cannot be used. Rather, the theory of the isometric circle is adapted since it treats all groups symmetrically. The pairing of circles and their inverses is likened to pairing particles with their antiparticles which then go on to produce nested circles, or a proliferation of particles. A corollary to Laguerres theorem, which states that the euclidean angle is represented by a pure imaginary projective invariant, represents the imaginary angle in the form of a real projective invariant.

KEYWORDS

Tessellations; Reggie Trajectories

Cite this paper

B. Lavenda, "Noneuclidean Tessellations and Their Relation to Regge Trajectories," Journal of Modern Physics, Vol. 4 No. 7, 2013, pp. 950-962. doi: 10.4236/jmp.2013.47128.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] T. Regge, Nuovo Cimento, Vol. 14, 1959, pp. 951-976.
[2] R. J. Eden, P. V. Landshoff, D. I. Olive and J. C. Polkinghorne, “The Analytic S-Matrix,” Cambridge U.P., Cambridge, 1966, p. 12.
[3] B. H. Lavenda, Journal of Modern Physics, Vol. 4, 9 p.
[4] G. Veneziano, Nuovo Cimento, Vol. 57, 1968, pp. 190-197. doi:10.1007/BF02824451
[5] N. F. Mott and H. S. W. Massey, “The Theory of Atomic Collisions,” 2nd Edition, Clarendon Press, Oxford, 1949, p. 52.
[6] K. Gottfried, “Quantum Mechanics,” Vol. 1, Fundamentals, Benjamin, New York, 1966, p. 148.
[7] V. Singh, Physical Review, Vol. 127, 1962, pp. 632-636. doi:10.1103/PhysRev.127.632
[8] L. D. Landau and E. M. Lifshitz, “Statistical Physics,” 2nd Edition, Pergamon, Oxford, 1959, p. 152.
[9] A. R. Forsyth, “A Treatise on Differential Equations,” 6th Edition, Macmillan, London, 1956, p. 228.
[10] V. Ovsienko and S. Tabachnikov, Notices AMS, Vol. 56, 2009, pp. 34-36.
[11] A. R. Choudhary, “New Relations between Analyticity, Regge Trajectories, Veneziano Amplitude, and Mobius Transformations,” arXiv: hep-th/0102019.
[12] J. R. Forshaw and D. A. Ross, “Quantum Chromodynamics and the Pomeron,” Cambridge U.P., Cambridge, 1997, p. 16. doi:10.1017/CBO9780511524387
[13] B. H. Lavenda, “Errors in the Bag Model of Strings, and Regge Trajectories Represent the Conservation of Angular Momentum in Hyperbolic Space,” arXiv:1112.4383.
[14] J. Gray, “Linear Differential Equations and Group Theory from Riemann to Poincaré,” Birkhauser, Boston, 1986, p. 36.
[15] L. R. Ford, “Automorphic Functions,” 2nd Edition, Chelsea Pub. Co., New York, 1929, p. 54.
[16] D. Mumford, C. Series and D. Wright, “Indra’s Pearls: The Vision of Felix Klein,” Cambridge U.P., Cambridge, 2002, p. 171.
[17] N. V. Efimov, “Higher Geometry,” Mir, Moscow, 1980, p. 413.
[18] H. Busemann and P. J. Kelly, “Projective Geometry and Projective Metrics,” Academic Press, New York, 1953, p. 231.
[19] J. M. Blatt and V. F. Weisskopf, “Theoretical Nuclear Physics,” Springer, New York, 1979, p. 330. doi:10.1007/978-1-4612-9959-2
[20] R. Omnès and M. Froissart, “Mandelstam Theory and Regge Poles,” Benjamin, New York, 1963, p. 27.
[21] H. A. Bethe, “Intermediate Quantum Mechanics,” Benjamin, New York, 1964, p. 185.
[22] A. R. Forysth, “Theory of Functions of a Complex Variable,” Vol. 2, 3rd Edition, Cambridge U.P., Cambridge, 1918, p. 685.
[23] Z. Nehari, “Conformal Mapping,” McGraw-Hill, New York, 1952, p. 164.
[24] S. C. Frautschi, “Regge Poles and S-Matrix Theory,” W. A. Benjamin, New York, 1963, p. 126.

  
comments powered by Disqus
JMP Subscription
E-Mail Alert
JMP Most popular papers
Publication Ethics & OA Statement
JMP News
Frequently Asked Questions
Recommend to Peers
Recommend to Library
Contact Us

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.