Share This Article:

New detrital zircon U-Pb ages from BIF-related metasediments in the Ntem Complex (Congo craton) of southern Cameroon, West Africa

Abstract Full-Text HTML Download Download as PDF (Size:3685KB) PP. 835-847
DOI: 10.4236/ns.2013.57101    4,531 Downloads   6,681 Views   Citations


Banded Iron Formations (BIFs) were formed by contemporaneous events of active sediments supply and the venting of a hydrothermal fluid source at the Mid-Ocean-Ridge. BIFs within the Ntem Complex at the northern edge of the Congo Craton are intercalated with metasandstones and siltstones. SHRIMP U-Pb analysis on detrital zircons obtained from these metasediments gave variable ages from over 3000 Ma to 1000 Ma with the maximum age of deposition clustered around 1200 Ma and the peak of deposition at 1800 Ma. This age range suggested that the sub-basin was opened sometime in the Archean and remained active up till the Neoproterozoic. Zircons with Archean ages have a provenance linked to the charnockitic suite and the high-K granites within the Ntem Complex. The Paleoproterozoic ages are attributed to clastic inputs from the neigbouring Nyong Series west of the Ntem Complex. Also the peak of deposition in the Proterozoic could probably be explained by the globally recognized intense crust-forming processes in the Early Proterozoic time. The provenance of the younger Neoproterozoic ages is tied to various lithologies within the northern mobile belts of the Adamawa-Yade massifs and correlates with Neoproterozoic sedimentation ages in the Yaoundé, Lom and Poli series. The Neoproterozoic ages obtained are comparable to those obtained from metasediments of the Amazonian Craton and provide evidence of Pre-Gondwana assemblage of the Congo and the S?o Francisco Cratons.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Chombong, N. , Suh, E. and Ilouga, C. (2013) New detrital zircon U-Pb ages from BIF-related metasediments in the Ntem Complex (Congo craton) of southern Cameroon, West Africa. Natural Science, 5, 835-847. doi: 10.4236/ns.2013.57101.


[1] James, H.J. (1954) Sedimentary facies of iron formation. Economic Geology, 49, 235-293. doi:10.2113/gsecongeo.49.3.235
[2] Dorr II, J.V.N. (1964) Supergene iron ores of Minas Gerais, Brazil. Economic Geology, 59, 1203-1240. doi:10.2113/gsecongeo.59.7.1203
[3] Holland, H.D. (1973) Ocean-possible source of iron in iron formations. Economic Geology, 68, 1169-1172. doi:10.2113/gsecongeo.68.7.1169
[4] Jacobsen, S.B. and Pimentel-Klose, M.R. (1988) Ndiso topic variations in Precambrian banded iron formations. Geopysical Research Letters, 15, 393-396. doi:10.1029/GL015i004p00393
[5] Bau, M. and Moller, P. (1993) Rare earth element systematics of the chemical precipitated component in Early Precambrian iron formations and the evolution of the terrestrial atmosphere-hydrosphere system. Geochimica et Cosmochemica Acta, 57, 2239-2249. doi:10.1016/0016-7037(93)90566-F
[6] Isley, A.E. (1995) Hydrothermal plumes and the delivery of iron to banded iron formations. Journal of Geology, 103, 169-185. doi:10.1086/629734
[7] Beukes, N.J., Dorland, H.D., Gutzmer, J., Nedachi, M. and Ohmoto, H. (2002) Tropical laterites, life on land and the history of atmospheric oxygen in the Paleoproterozoic. Geology, 30, 419-494. doi:10.1130/0091-7613(2002)030<0491:TLLOLA>2.0.CO;2
[8] Clout, J.M.F. and Simonson, B.M. (2005) Precambrian iron formations and iron formations-hosted iron ore de posits. Economic Geology, 100, 643-679.
[9] Beukes, N.J. and Gutzmer, J. (2008) Origin and paleoen vironmental significance of major iron formations of the archean-paleoproterozoic boundary. Reviews in Economic Geology, 15, 5-47.
[10] Steinhoefel, G., Von Blanckenburg, F., Horn, I., Konhau ser, K.O., Beukes, N.J. and Gutzmer, J. (2010) Deciphering formation processes of banded iron formations from the Transvaal and the Hamersley successions by com bined Si and Fe isotope analysis using UV femtosecond laser ablation. Geochimica et Cosmochimica Acta, 74, 2677-2696. doi:10.1016/j.gca.2010.01.028
[11] Garland, F.S., Turner, S. and Hawkesworth, C. (1996) Shifts in the source of the Parana basalts through time. Lithos, 37, 223-243. doi:10.1016/0024-4937(95)00038-0
[12] Isley, A.E. and Abbott, D.H. (1999). Plume-related mafic volcanism and the deposition of banded iron formation. Geophysical Research, 104, 15461-15477. doi:10.1029/1999JB900066
[13] Campbell, L.H., Griffiths, R.W. and Hill, R.I. (1989) Melting in an Archean mantle plume: Heads its basalts, tails its komatiites. Nature, 339, 697-699. doi:10.1038/339697a0
[14] Richards, M.A., Duncan, R.A. and Comtillot, V.E. (1989) Flood basalts and hot-spot tracks: Plume heads and tails. Science, 246, 103-107. doi:10.1126/science.246.4926.103
[15] Robert, F. and Chaussidon, M. (2006) A palaeotempera ture curve for the Precambrian oceans based on silicon isotopes in cherts. Nature, 443, 969-972. doi:10.1038/nature05239
[16] Van den Boorn, S.H.J.M., Van Bergen, M.J., Nijman, W. and Vroon, P.Z. (2007) Dual role of sea water and hydro thermal fluids in Early Archean chert formation: Evidence from silicon isotopes. Geology, 35, 939-942. doi:10.1130/G24096A.1
[17] Van den Boorn, S.H.J.M., Van Bergen, M.J., Vroon, P.Z., Vries, S.T. and Nijman. W. (2010) Silicon isotopes and trace elements constraints on the origin of ~3.5Gacherts: Implications for early Archean marine environments. Geochimica et Cosmochimica Acta, 74, 1077-1103. doi:10.1016/j.gca.2009.09.009
[18] Simonson, B.M. (2003) Origin and evolution of large Precambrian iron formations. Geological Society of America Special Paper, 370, 231-244.
[19] Takam, T., Arima, M., Kokonyangi, J., Dunkley, D.J. and Nsifa, E.N. (2009) Paleoarchean charnockite in the Ntem Comples, Congo Craton, Cameroon: Insights from SHR IMP zircon U-Pbages. Journal of Mineralogical and Petrological Sciences, 104, 1-11. doi:10.2465/jmps.080624
[20] Shang, C.K., Liégeois, J.P., Satir, M., Frisch, W. and Nsifa, E.N. (2010). Late Archaean high-K granite geochronology of the northern metacratonic margin of the Archaean Congo craton, Southern Cameroon: Evidence for Pb-loss due to non-metamorphic causes. Gondwana Research, 18, 337-355. doi:10.1016/
[21] Pouclet, A., Tchameni, R., Mezger, K., Vidal, M., Nsifa, E.N., Shang, C.K. and Penaye, J. (2007) Archean crustal accretion at the northern border of the Congocraton (South Cameroon). The charnockite-TTG link. Bulletin of the Geological Society of France, 178, 331-342. doi:10.2113/gssgfbull.178.5.331
[22] Shang, C.K., Satir, M., Nsifa, E.N., Liegeois, J.P., Siebel, W. and Taubald, H. (2007). Archean high K-granitoids produced by remelting of early Tonalite-Trondhjemite Granodiorite (TTG) in the Sangmelima region of the Ntem Complex of the Congo craton, southern Cameroon. International Journal of Earth Sciences, 96, 817-842. doi:10.1007/s00531-006-0141-3
[23] Suh, C.E., Cabral, A.R., Shemang, E.M., Mbinkar, L. and Mboudou, G.G.M. (2008) Two contrasting iron-ore de posits in the Precambrian mineral belt of Cameroon, West Africa. Exploration and Mining Geology, 17, 197-207. doi:10.2113/gsemg.17.3-4.197
[24] Suh, C.E., Cabral, A.R. and Ndime, E. (2009) Geology and ore fabrics of the Nkout high-grade haematite deposit, southern Cameroon. In: Williams, P.J., et al., Eds., Smart Science for Exploration and Mining, SGA Publication series, Amsterdam, 558-560.
[25] Nforba, M.T., Suh, C.E. and Kabeyene, K.V.K. (2010) Mbalam iron ore project, northern edge of the Congo craton, southeast Cameroon. In: Goldfarb, R.J., Marsh, E.E. and Monecke, E., Eds., Proceedings of the Society of Economic Geologists on the Challenge of Finding New Mineral Resources: Global Metallogeny, Innovative Exploration and New Discoveries, SEG Extended Abstracts, Colorado, G-22.
[26] Ilouga, C.D.I., Suh, C.E. and Ghogomu, R.T. (2013) Textures and rare earth elements composition of Banded Iron Formations (BIF) at Njweng prospect, Mbalam Iron Ore District, Southern Cameroon. International Journal of Geosciences, 4, 146-165. doi:10.4236/ijg.2013.41014
[27] Milesi, J.P., Toteu, S.F., Deschamps, Y., Feybesse, J.L., Lerouge, C., Cocherie, A., Penaye, J., Tchameni, R., Mo loto-A-Kenguemba, G., Kampunzu, H.A.B., Nicol, N., Duguey, E., Leistel, J.M., Saint-Martin, M., Ralay, F., Heinry, C., Bouchot, V., Doumnang Mbaigane, J.C., Kanda Kula, V., Chene, F., Monthel, M., Boutin, B. and Cailteux, J. (2006) An overview of the geology and major ore deposits of Central Africa: Explanatory note for the 1: 4000,000 map “Geology and major ore deposits of Central Africa”. Journal of African Earth Sciences, 44, 571-595. doi:10.1016/j.jafrearsci.2005.10.016
[28] Tchameni, R., Mezger, K., Nsifa, N.E. and Pouclet, A. (2000) Neoarchean evolution of the Congocraton: Evidence from K-rich granitoids of the Ntem Complex, southern Cameroon. Journal of African Earth Sciences, 30, 133-147. doi:10.1016/S0899-5362(00)00012-9
[29] Feybesse, J.L., Johan, V., Triboulet, C., Guerrot, C., Ma yaga-Mikolo, F., Bouchot, V. and Ekondong, J. (1998) The West Central African belt: A model of 2.5-2.0Ga accretion and two-phase orogenic evolution. Precambrian Research, 87, 161-216. doi:10.1016/S0301-9268(97)00053-3
[30] Shang, C.K., Satir, M., Siebel, W., Nsifa, E.N., Taubald, H., Liégeois, J.P. and Tchoua, F.M. (2004) TTG magmatism in the Congo craton: Case study of the Sangmalima region, Ntem Complex, southern Cameroon. Journal of African Earth Sciences, 40, 61-79. doi:10.1016/j.jafrearsci.2004.07.005
[31] Alkmim, F.F., Marshak, S., Pedrosa-Soares, A.C., Peres, G.G., Cruz, S.C.P. and Whittington, A. (2006) Kinematic evolution of the Aracuaí-West Congoorogeny in Brazil and Africa: Nutcracker tectonics during the Neoproterozoic assembly of Gondwana. Precambrian Research, 149, 43-46. doi:10.1016/j.precamres.2006.06.007
[32] Van Schmus, W.R., Oliveira, E.P., da Silva Filho, E.F., Toteu, S.F., Penaye, J. and Guimaraes, I.P. (2008) Proterozoic links between the Borborema Province, NE Brazil, and the Central African Fold Belt. Geological Society, Special Publications, London, 294, 69-99.
[33] Danderfer, A., De Waele, B., Pedreira, A.J. and Nalini, H.A. (2009) New geochronological constraints on the geological evolution of Espinhaco basin within the Sao Francisco Craton-Brazil. Precambrian Research, 170, 116-128. doi:10.1016/j.precamres.2009.01.002
[34] Neves, S.P., Bruguier, O., da Silva, J.M.R., Bosch, D., Alcantara, V.C. and Lima, C.M. (2009) The age distributions of detrital zircons in metasedimentary sequences in eastern Borborema Province (NE Brazil): Evidence for intercontinental sedimentation and orogenesis? Precam brian Research, 175, 187-205. doi:10.1016/j.precamres.2009.09.009
[35] Hollanda, M.H.B.M., Archanjo, C.J., Souza, L.C., Arm strong, R. and Vasconcelos, P.M. (2010) Cambrianmafic to felsic magmatism and its connections with transcurrent shear zones of the Borborema Province (NE Brazil): Implications for late assembly of West Gondwana. Precam brian Research, 178, 1-14. doi:10.1016/j.precamres.2009.12.004
[36] Oliveira, E.P., Windley, B.F. and Araújo, M.N.C. (2010) The Neoproterozoic Sergipano orogenic belt, NE Brazil: A complete plate tectonic cycle in western Gondwana. Precambrian Research, 181, 64-84. doi:10.1016/j.precamres.2010.05.014
[37] Bueno, J.F., Oliveira, E.P., McNaughton, N. and Laux, J.H. (2009) U-Pb dating of granites in the Neoproterozoic Sergipano Belt, NE Brazil: Implications for the timing and duration of continental collision and extension tectonic in the Borborema Province. Gondwana Research, 15, 86-97. doi:10.1016/
[38] Oliveira, E.P., Toteu, S.F., Araújo, M.N.C., Carvalho, M.J., Nascimento, R.S., Bueno, J.F., MCNaughton, N. and Basilici, G. (2006) Geologic correlation between the Neoproterozoic Sergipano belt (NE Brazil) and the Yaoundé Schists belt (Cameroon, Africa). Journal of African Earth Sciences, 44, 470-478. doi:10.1016/j.jafrearsci.2005.11.014
[39] Chombong, N.N. and Suh, C.E. (2013) 2883 Ma commencement of BIF deposition at the northern edge of Congocraton, southern Cameroon: New zircon SHRIMP data constraint from metavolcanics. Episodes, 36, 47-57.
[40] Black, L.P., Kamo, S.L., Allen, C.M., Davis, D.W., Al einikoff, J.N., Valley, J.W., Mundil, R., Campbell, I.H., Korch, R.J., Williams, L.S. and Foudoulis, C. (2004) Improved 206Pb/238U microprobe geochronology by monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chemical Geology, 205, 115-140. doi:10.1016/j.chemgeo.2004.01.003
[41] Paces, J.B. and Miller, J.D. (1993) Precise U-Pb age of Duluth Complex and related mafic intrusions, northeastern Minnesota: Geochronological insights to physical, petrogenetic, paleomagnetic, and tectonomagnetic processes associated with the 1.1 Ga Midcontinent rift system. Journal of Geophysical Research, 98, 13997-14013. doi:10.1029/93JB01159
[42] Claoué-Long, J.C., Compston, W., Roberts, J. and Fanning, C.M. (1995) Two Carboniferous ages: A compare son of SHRIMP zircon dating with conventional zircon ages and 40Ar/39Ar analysis. In: Berggen, W.A., Kent, D.V., Aubry, M.P. and Hardenbol, J., Eds., Geochronology, Time Scales and Global Stratigraphic Correlation, SEPM Special Publication, Colorado, 3-21.
[43] Williams, I.S. (1998) U-Th-Pb geochronology by ion microprobe. In: McKibben, M.A., Shanks III, W.C. and Ridley, W.I., Eds., Applications of Microanalytical Techniques to Understanding Mineralising Processes, Society of Economic Geologists, Colorado, 1-35.
[44] Ludwig, K.R. (2001) SQUID 1.03, a user’s manual. Berkeley Geochronology Center, Berkeley, 19.
[45] Steiger, R.H. and Jager, E. (1977) Subcommision on geochronology: Convention on the use of decay constants in geo and cosmochronology. Earth Planetary Science Letters, 36, 359-362. doi:10.1016/0012-821X(77)90060-7
[46] Stacey, J.S. and Kramers J.D. (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planetary Science Letters, 26, 207-221. doi:10.1016/0012-821X(75)90088-6
[47] Ludwig, K.R. (2003) Isoplot 3.00: A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley, 70.
[48] Borradaile, G.J., Bayly, M.B. and Powell, C.M.A. (1982) Atlas of deformational and metamorphic rock fabrics. Springer-Verlag, Berlin, 551. doi:10.1007/978-3-642-68432-6
[49] Wright, P.L. (1974) The chemistry and mineralogy of the clay fraction of sediments from the southern Barents Sea. Chemical Geology, 13, 197-216. doi:10.1016/0009-2541(74)90020-5
[50] McLennan, S.M. (1982) On the geochemical evolution of sedimentary rocks. Chemical Geology, 37, 335-350. doi:10.1016/0009-2541(82)90087-0
[51] McLennan, S.M. and Taylor, S.R. (1984) Archean sedimentary rocks and their relation to the composition of the Archean crust. In: Kroner, A., Ed., Archean Geochemistry, Springer-Verlag, Berlin, 47-72. doi:10.1007/978-3-642-70001-9_3
[52] Roser, B.P., Cooper, R.A., Nathan, S. and Tulloch, A.J. (1996) Reconnaissance sandstone geochemistry, provenance, and tectonic setting of the lower Paleozoic terranes of the West Coast and Nelson, New Zealand. New Zealand Journal of Geology and Geophysics, 39, 1-16. doi:10.1080/00288306.1996.9514690
[53] Brynton, W.V. (1984) Geochemistry of the rare earth elements: Meteorite studies. In: Henderson, P., Ed., Rare Earth Elements Petrochemistry, Elsevier, Amsterdam, 63-114.
[54] Derry, L.A. and Jacobsen, S.B. (1990) The chemical evolution of Precambrian seawater: Evidence from REEs in banded iron formations. Geochimica et Cosmochimica Acta, 54, 2965-2977. doi:10.1016/0016-7037(90)90114-Z
[55] Elderfield, H., Upstill-Goddard, R. and Sholkovitz, E. R. (1990) The rare earth elements in rivers, estuaries, and coastal seas and their significance to the composition of ocean waters. Geochimica et Cosmochimica Acta, 54, 971-991. doi:10.1016/0016-7037(90)90432-K
[56] Shang, C.K., Siebel, W., Satir, M., Chen, F. and Mvondo, J.O. (2004) Zircon Pb-Pb and U-Pb systematic of TTG rocks in the Congo craton: Constraints on crust formation, magmatism and Pan-African lead loss. Bulletin of Geo science, 79, 205-219.
[57] Tchameni, R., Mezger, K., Nsifa, N.E. and Pouclet, A. (2001) Crustal origin of early Proterozoic syenites in the Congo craton (Ntem Complex), southern Cameroon. Lithos, 57, 23-42. doi:10.1016/S0024-4937(00)00072-4
[58] Li, Q., Liu, S., Wang, Z., Chu, Z., Song, B., Wang, Y. and Wang, T. (2008) Contrasting provenance of Late Archean metasedimentary rocks from the Wutai Complex, North China Craton: Detrital zircon U-Pb, whole-rock Sm-Nd isotopic and geochemical data. International Journal of Earth Sciences (Geologische Rundschau), 97, 443-458. doi:10.1007/s00531-007-0170-6
[59] Lasserre, M. and Soba, D. (1976) Age Libérien des granodiorite et des gneiss à pyroxenes du Cameroun méridional. Bulletin of the Geological and Mining Research Department (BRGM), 2, 17-32.
[60] Lerouge, C., Cocherie, A., Toteu, S.F., Penaye, J., Milési, J.P., Tchameni, R., Nsifa, E.N., Fanning, C.M. and Doloule, E. (2006) Shrimp U-Pb zircon age evidence for Paleoproterozoic sedimentation and 2.05Ga syntectonic plutonism in the Nyong Group, SouthWestern Cameroon: Consequences for the Eburnean-Transamazonian belt of NE Brazil and Central Africa. Journal of African Earth Sciences, 44, 413-427. doi:10.1016/j.jafrearsci.2005.11.010
[61] Kryza, R., Zalasiewicz, J., Mazur, S., Aleksandrowski, P., Sergeev, S. and Larionov, A. (2007) Precambrian crustal contribution to the Variscan accretionary prism of the Kaczawa Mountains (Sudetes, SW Poland): Evidence from SHRIMP dating of detrital zircons. International Journal of Earth Sciences (Geologische Rundschau), 96, 1153-1162. doi:10.1007/s00531-006-0147-x
[62] Gebauer, D., Williams, I.S., CompstoN, W. and Grünen felder, M. (1989) The development of the central European continental crust since the early Archean based on conventional and ion-microprobe dating of up to 3.84 by old detrital zircons. Tectonopysics, 157, 81-96. doi:10.1016/0040-1951(89)90342-9
[63] Friedl, G., Finger, F., McNaughton, N.J. and Fletcher, I.R. (2000) Deducing the ancestry of terranes: SHRIMP evidence for South America-derived Gondwana fragments in central Europe. Geology, 28, 1035-1038. doi:10.1130/0091-7613(2000)28<1035:DTAOTS>2.0.CO;2
[64] Friedl, G., Finger, F., Paquette, J.L., von Quadt, A., McNaughton, N.J. and Fletcher, I.R. (2004) Pre-Variscan geological events in the Austrain part of the Bohemian Massif deduced from U-Pb zircon ages. International Journal of Earth Sciences (Geologische Rundschau), 93, 802-823. doi:10.1007/s00531-004-0420-9
[65] Tack, L., Wingate, M.T.D., Liégeois, J.P., Fernadez Alonso, M. and Deblond, A. (2001). Early Neoproterozoic magmatism (1000-910Ma) of the Zadinian and Mayumbian Groups (Bas-Congo): Onset of Rodinia rifting at the western edge of the Congo Craton. Precambrian Research, 110, 277-306. doi:10.1016/S0301-9268(01)00192-9
[66] Toteu, S.F., Penaye, J., Deloule, E., Van Schmus, W.R. and Tchameni, R. (2006) Diachronous evolution of volcano-sedimentary basins north of the Congocraton: Insights from U-Pb ion microprobe dating of zircons from the Poli, Lom and Yaounde Groups (Cameroon). Journal of African Earth Sciences, 44, 428-442. doi:10.1016/j.jafrearsci.2005.11.011
[67] Maurizot, P., Abessolo, A., Feybesse, J.L., Johan, V. and Lecomte, P. (1986) Etude et prospection minière du Sud-Ouest Cameroon. Synthèse des travaux de 1978 à 1985. Geological and Mining Research Department (BRGM) Rreport, 85, 66.
[68] Babinski, M., Boggiani, P.C., Trindade, R.I.F and Fanning, C.M. (2012) Detrital zircon ages and geochronological constraints on the Neoproterozoic Puga diamictites and associated BIFs in the southern Paraguay Belt, Brazil. Gondwana Research, 3, 988-997.

comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.