Share This Article:

Estimation of Residence Times and Recharge Area of Groundwater in the Moulares Mining Basin by Using Carbon and Oxygen Isotopes (South Western Tunisia)

Abstract Full-Text HTML Download Download as PDF (Size:1837KB) PP. 466-474
DOI: 10.4236/jep.2010.14054    5,660 Downloads   10,840 Views   Citations

ABSTRACT

Radiogenic carbon (14C) of the DIC (Dissolved Inorganic Carbon) and oxygen-18 were used to understand the hydro- dynamic functioning of the multilayer aquifer system in the Moulares mining basin, southern Tunisia. The results of this study permits identify two groundwater types. A- an old paleoclimatic groundwater, marked by low carbon-14 (14C) activities. B - a recent groundwater, was distinguished by relatively high carbon-14 activities. In addition to these two water types, other groundwater, indicating a mixing effect, is resulting presumably from upward movement from the deeper groundwater. Based on 14C activity and the piston flow type theory the groundwater residence time varies from 5 Kyear to 35 Kyear. Carbon-14 activity and oxygen-18 in Groundwater are active since Mio-Plio-Quaternary and Upper Cretaceous aquifers lead to the identification of paleorecharged water probably during Late Pleistocene and Early to Middle Holocene. The water feedings of these aquifers are mainly provided by infiltration of precipitations, infiltration of irrigation water, lateral feeding from cretaceous relieves from the South and the North and along recent and fossil drainage networks that constitute major fresh water sources in groundwater tables.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Y. Hamed, M. Zairi, W. Ali and H. Dhia, "Estimation of Residence Times and Recharge Area of Groundwater in the Moulares Mining Basin by Using Carbon and Oxygen Isotopes (South Western Tunisia)," Journal of Environmental Protection, Vol. 1 No. 4, 2010, pp. 466-474. doi: 10.4236/jep.2010.14054.

References

[1] A. Choura et Y. Hamed, “Actualisation du Bilan des Nappes du Bassin Minier de Moulares-Redayef,” RAP International, DGRE, 2010.
[2] Y. Hamed, “Effet de la Pollution Industrielle sur les Ressources Hydriques Dans le Bassin Minier de Gafsa Sud (Sud Ouest Tunisien),” La 2ème Edition du Congrès International Eaux, Déchets et Environnements-Union des Pays de la Méditerranée - El Jadida, Maroc, 2009.
[3] M. Yermani, K. Zouari, J. L. Michelot, A. Mamou and L. Moumni, “Approche Géochimique du Fonctionnement de la Nappe Profonde de Gafsa Nord (Tunisie centrale)/ Geo-Chemical Approach to the Functioning of the Gafsa North Deep Aquifer (Central Tunisia),” Hydrology Science Journal, Vol. 48, No. 1, 2003, pp. 95-108.
[4] OSS. “Système Aquifere du Sahara Septentrional. Obser- vatoire du Sahara et du Sahel,” TechRep, Tunis, 2003, pp. 9973-856.
[5] M. Henchiri and N. Slim-S’Himi, “Silicification of Sul- phate Evaporites and Their Carbonate Replacements in Eo- cene Marine Sediments,” Two Diagenic Trends, Sedimentology, Tunisia, 2006, pp. 1-25.
[6] R. Ahmadi, “Utilisation des Marqueurs Morphologiques, Sédimentologiques et Microstructuraux Pour la Validation des Modèles Cinématiques de Plissement. Application à l’Atlas Méridional Tunisien, Thèse Doctorat,” 3é Cycle, Faculté des Sciences et Techniques, Nantes, 2006, p. 200.
[7] Y. Hamed, “Caractérisation Hydrogeologique, Hydrochi- mique et Isotopique du Systeme Aquifere du Synclinal de Moularès-Tamerza (Sud Ouest Tunisien),” Ph.D Thesis, University of Sfax, 2009.
[8] C. Swezy, “The Role of Climate in the Creation and Destruction of Continental Stratigraphic Records: An Example from the Northern Margin of the Sahara Desert,” SEPM (Society for Sedimentary Geology), Special Publication, Vol. 77, 2003, pp. 207-225.
[9] R. Ahmadi, J. Ouali, E. Mercier and J. L. Mansy, “The Geo-Morphologic Responses to Hinge Migration in the Fault-Related Folds in the Southern Tunisian Atlas,” Journal of Structural Geology, Vol. 28, No. 4, 2006, pp. 721-728.
[10] F. Zargouni, “Tectonique de l’Atlas Méridional de Tun- isie. Evolution Géométrique et Cinématique des Structures en Zones de Cisaillement, Thèse Doctorat des Sciences,” Université de Louis Pasteur de Strasbourg, France, 1985.
[11] M. Stuiver and H. Polach, “Reporting of 14C Data,” International Journal of Radiocarbon, Vol. 19, 1977, pp. 355-363.
[12] M. L. Coleman, T. J. Shepherd, J. J. Durham, J. E. Rouse, G. R. Moore, “Reduction of Water with Zinc for Hy- drogen Isotope Analysis,” Analytical Chemistry, Vol. 54, 1982, pp. 993-995.
[13] S. Epstein and T. K. Meyada, “Variations of 18O Content of Waters from Natural Sources,” Geochimica et Cosmochimica Acta, Vol. 4, No. 5, 1953, pp. 213-224.
[14] B. Abidi, “Caractérisation Hydrogéologique, Géochimi- que et Isotopique des Systèmes Aquifères du Synclinal de Tamerza et de la Plaine de Chott El Gharsa (Sud Ouest Tunisien), Thèse Doctorat,” Université de Sfax, 2007.
[15] M. Chalbaoui, “Vulnérabilité des Nappes Superficielles Subaffleurantes du Sud-Ouest de la Tunisie,” Sécheresse, Vol. 11, No. 2, 2000, pp. 85-91.
[16] A. Mamou, “Etude Géologique et Hydrogéologique de la Région de Tamerza (Sud-Ouest Tunisien). Possibilité de Création de Retenues Souterraines au Nord du Jebel El Ardhia, Thèse Doctorat de 3é Cycle,” Université Scienti- fique et Médicale de Grenoble, France, 1981.
[17] Y. Hamed, “Caractérisation Hydrogéologique, Hydrochi- mique et Isotopique des Eaux Souterraines de la Région du Kef (Nord Ouest Tunisien). Mémoire DEA,” Faculté des Sciences de Sfax, 2004.
[18] K. P. Seiler, “Man’s Impact on Groundwater Systems. Environmental Isotopes in the Hydrological Cycle,” Principles and Applications, Volume 5, 2000.
[19] J. C. Fontes, “Isotopes du Milieu et Cycles des Eaux Naturelles: Quelques Aspects, Thèse, Doctorat des Sciences,” Pierre et Marie Curie Paris VI, France, 1976.
[20] GNIP, “Global Network for Isotopes in Precipitation,” The GNIP Database, Release 3, October 1999. http:// www.iaea.org/programs/ri/gnip/gnipmain.htm
[21] J. Andrews, W. Edmunds, P. Smedley, J. Fontes, L. Fifield and G. Alla, “Chloride 36 in Groundwater as a Palioclimatic Indicator: The East Midlands Triasic Sandstone Aquifer (UK),” Earth and Planetary Science Letters, Vol. 122, 1994, pp. 159-171.
[22] S. Kamel, Y. Hamed, N. Chkir and K. Zouari, “The Hy- dro Geochemical Characterization of Ground Waters in Tunisian Chott’s Region,” Evironmental Geology, Vol. 54, No. 4, 2007, pp. 843-857.
[23] A. Maliki, “Etude Hyrogéologique, Hydrochimique et Is- otopique du Système Aquifère de Sfax (Tunisie), Thèse Doctorat,” Université de Tunis II, 2000.
[24] M. Gouasmia, “Etude Géophysique des Potentialités Hy- drauliques au SW de la Région de Gafsa. Thèse Doctorat de 3é cycle,” Université de Tunis II. Tunis, 2008.
[25] N. Kachouri, “Contribution à l’Etude Hydrogéologique du Bassin de Moulares-Tamerza, Thèse Doctorat de 3é Cycle,” Université de Bordeaux III, 1988.
[26] M. Ricolvi, “Etude Hydrogéologique du Bassin de Mou- larès-Redeyef,” DRES, Serv.géol et rech.Cie des phosph- ates, 1977.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.