Adsorption by Liquid-Liquid Extraction of Hg(II) from Aqueous Solutions Using the 2-Butyl-imidazolium Di-(2-ethylhexyl) Phosphate as Ionic Liquid

Abstract

In this work, a novel room temperature ionic liquid (2-butyl-imidazolium di-(2-ethylhexyl) phosphate) ([C4mim] [D2EHPA]) was synthesized and tested as extractant in the mercury(II) liquid-liquid extraction. The effects of parameters such as aqueous to organic phase’s volume ratio, metal concentration IL concentration, pH levels, ionic strength, and temperature were reported. For the extraction of metal, [C4mim]3[R.HR]3[HgCl2]org and [C4mim]3[R.HR]3 [HgClOH]org species were formed where (H2R2) was D2EHPA. In the case of ionic strength, the results showed that the addition of sodium acetate at 0.302 mmol·L?1 to the aqueous phase strongly increased the mercury extraction yield (R = 100%). The extracted species were investigated by a calculation program using CHEAQS V. L20.1 inorder to determine the relation between the percentages of the extracted species and the extraction yield. The results showed that the extracted species in the best conditions were HgCl2 and HgClOH with respective percentages 80.66% and 18.29%.

Share and Cite:

M. Didi, B. Medjahed and W. Benaouda, "Adsorption by Liquid-Liquid Extraction of Hg(II) from Aqueous Solutions Using the 2-Butyl-imidazolium Di-(2-ethylhexyl) Phosphate as Ionic Liquid," American Journal of Analytical Chemistry, Vol. 4 No. 7A, 2013, pp. 40-47. doi: 10.4236/ajac.2013.47A006.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] OSPAR, “Directive 2008/105/EC of the European Parliament and of the Council of the European Union,” OJEC, Vol. 348, 2008, pp. 84-97.
[2] J. C. Clifton, “Mercury Exposure and Public Health,” Pediatric Clinics of North America, Vol. 54, No. 2, 2007, pp. 237-269.
[3] T. W. Clarkson and L. Magos, “The Toxicology of Mercury and Its Chemical Compounds,” Critical Reviews in Toxicology, Vol. 36, No. 8, 2006, pp. 609-662. doi:10.1080/10408440600845619
[4] L. D. Hylander and M. E. Goodsite, “Environmental Costs of Mercury Pollution,” Science of the Total Environment, Vol. 368, No. 1, 2006, pp. 352-370. doi:10.1016/j.scitotenv.2005.11.029
[5] A. Oehmen, J. Fradinho, S. Serra, G. Carvalho, J. L. Capelo, S. Velizarov, J. G. Crespo and M. A. M. Reis, “The Effect of Carbon Source on the Biological Reduction of Ionic Mercury,” Journal of Hazardous Materials, Vol. 165, No. 1-3, 2009, pp. 1040-1048. doi:10.1016/j.jhazmat.2008.10.094
[6] M. M. Matlock, B. S. Howerton and D. A. Atwood, “Irreversible Precipitation of Mercury and Lead,” Journal of Hazardous Materials, Vol. 84, No. 1, 2001, pp. 73-82. doi:10.1016/S0304-3894(01)00190-X
[7] J. Barron-Zambrano, S. Laborie, P. Viers, M. Rakib and G. Durand, “Mercury Removal and Recovery from Aqueous Solutions by Coupled Complexation-Ultrafiltration and Electrolysis,” Journal of Membrane Science, Vol. 229, No. 1-2, 2004, pp. 179-186. doi:10.1016/j.memsci.2003.10.028
[8] T. S. Anirudhan, L. Divya and M. Ramachandran, “Mercury(II) Removal from Aqueous Solutions and Wastewaters Using a Novel Cation Exchanger Derived from Coconut Coir Pith and Its Recovery,” Journal of Hazardous Materials, Vol. 157, No. 2-3, 2008, pp. 620-627. doi:10.1016/j.jhazmat.2008.01.030
[9] Z. Li, Q. Wei, R. Yuan, X. Zhou, H. Liu, H. Shan and Q. Song, “A New Room Temperature Ionic Liquid 1-Butyl3-Trimethylsilylimidazolium Hexafluorophosphate as a Solvent for Extraction and Preconcentration of Mercury with Determination by Cold Vapor Atomic Absorption Spectrometry,” Talanta, Vol. 71, No. 1, 2007, pp. 68-72. doi:10.1016/j.talanta.2006.03.023
[10] Y. Terashima, H. Ozaki and M. Sekine, “Removal of Dissolved Heavy Metals by Chemical Coagulation, Magnetic Seeding and High Gradient Magnetic Filtration,” Water Research, Vol. 20, No. 5, 1986, pp. 537-545. doi:10.1016/0043-1354(86)90017-5
[11] S. Basha, Z. V. P. Murthy and B. Jha, “Sorption of Hg(II) onto Carica Papaya: Experimental Studies and Design of Batch Sorber,” Chemical Engineering Journal, Vol. 147, No. 2-3, 2009, pp. 226-234. doi:10.1016/j.cej.2008.07.005
[12] I. B. Rae, S. W. Gibb and S. Lu, “Biosorption of Hg from Aqueous Solutions by Crab Carapace,” Journal of Hazardous Materials, Vol. 164, No. 2-3, 2009, pp. 1601-1604. doi:10.1016/j.jhazmat.2008.09.052
[13] Ionic Liquids Today, No. 2-11, 2011.
[14] R. D. Rogers and K. S. Seddon, “Ionic Liquids Industrial Applications for Green Chemistry ACS Symposium Series,” ACS, Washington DC, 2002, p. 818.
[15] M. J. Earle and K. R. Seddon, “Ionic Liquids, Green Solvents for the Future,” Pure and Applied Chemistry, Vol. 72, No. 7, 2000, pp. 1391-1398. doi:10.1351/pac200072071391
[16] A. Noda, K. Hayamizu and M. Watanabe, “Pulsed-Gradient Spin-Echo 1H and 19F NMR Ionic Diffusion Coefficient, Viscosity, and Ionic Conductivity of Non-Chloroaluminate Room-Temperature Ionic Liquids,” The Journal of Physical Chemistry B, Vol. 105, No. 20, 2001, pp. 46034610. doi:10.1021/jp004132q
[17] H. Tokuda, K. Hayamizu, K. Ishii, M. A. B. H. Susan and M. Watanabe, “Physicochemical Properties and Structures of Room Temperature Ionic Liquids. 2. Variation of Alkyl Chain Length in Imidazolium Cation,” The Journal of Physical Chemistry B, Vol. 109, No. 13, 2005, pp. 61036110. doi:10.1021/jp044626d
[18] J. L. Anderson, J. Ding, T. Welton and D. W. Armstrong, “Characterizing Ionic Liquids on the Basis of Multiple Solvation Interactions,” Journal of the American Chemical Society, Vol. 124, No. 47, 2002, pp. 14247-14254. doi:10.1021/ja028156h
[19] L. Duchet, J. C. Legeay, D. Carrié, L. Paquin, J. J. Vanden Eynde and J. P. Bazureau, “Synthesis of 3,5-Disubstituted 1,2,4-Oxadiazoles Using Ionic Liquid-Phase Organic Synthesis (IoLiPOS) Methodology,” Tetrahedron, Vol. 66, No. 4, 2010, pp. 986-994. doi:10.1016/j.tet.2009.11.079
[20] M. V. B. Zanoni, E. I. Rogers, C. Hardacre and R. G. Compton, “The Electrochemical Reduction of the Purines Guanine and Adenine at Platinum Electrodes in Several Room Temperature Ionic Liquids,” Analytica Chimica Acta, Vol. 659, No. 1-2, 2010, pp. 115-121. doi:10.1016/j.aca.2009.11.026
[21] N. Fontanals, S. Ronka, F. Borrull, A. W. Trochimczuk and R. M. Marcé, “Supported Imidazolium Ionic Liquid Phases: A New Material for Solid-Phase Extraction,” Talanta, Vol. 80, No. 1, 2009, pp. 250-256. doi:10.1016/j.talanta.2009.06.068
[22] K. R. Seddon, “Ionic Liquids for Clean Technology,” Journal of Chemical Technology & Biotechnology, Vol. 68, 1997, pp. 351-356. doi:10.1002/(SICI)1097-4660(199704)68:4<351::AID-JCTB613>3.0.CO;2-4
[23] P. Kubisa, “Ionic Liquids as Solvents for Polymerization Processes—Progress and Challenges,” Progress in Polymer Science, Vol. 34, No. 12, 2009, pp. 1333-1347. doi:10.1016/j.progpolymsci.2009.09.001
[24] M. Regel-Rosocka, “Extractive Removal of Zinc(II) from Chloride Liquors with Phosphonium Ionic Liquids/Toluene Mixtures as Novel Extractants,” Separation and Purification Technology, Vol. 66, No. 1, 2009, pp. 19-24. doi:10.1016/j.seppur.2008.12.002
[25] “Program for Calculating Chemical Equilibria in Aquatic Systems,” RIVM, Bilthoven, 2004. http://home.tiscali.nl/cheaqs
[26] N. Miralles, A. M. Sastre, M. Aguilar and M. Cox, “Solvent Extraction of Zinc(II) by Organophosphorus Acids Compounds from Perchlorate Solutions,” Solvent Extraction and Ion Exchange, Vol. 10, No. 1, 1992, pp. 51-68. doi:10.1080/07366299208918092
[27] I. Puigdomenech, “HYDRA (Hydrochemical Equilibrium Constant Database) and MEDUSA (Make Equilibrium Diagrams Using Sophisticated Algorithms) Programs,” Royal Institute of Technology, Sweden. http://www.kemi.kth.se/medusa
[28] A. Mellah and D. Benachour, “The Solvent Extraction of Zinc and Cadmium from Phosphoric Acid Solution by Di-2-Ethyl Hexyl Phosphoric Acid in Kerosene Diluents,” Journal of Chemical Engineering & Process, Vol. 45, No. 8, 2006, pp. 684-690. doi:10.1016/j.cep.2006.02.004
[29] E. K. Alamdari, D. Moradkhani, D. Darvish, M. Askari and D. Behnian, “Synergistic Effect of MEHPA on Co-Extraction of Zinc and Cadmium with DEHPA,” Minerals Engineering, Vol. 17, No. 1, 2004, pp. 89-92. doi:10.1016/j.mineng.2003.10.003
[30] T. Welton, “Room-Temperature Ionic Liquids: Solvents for Synthesis and Catalysis,” Chemical Reviews, Vol. 99, No. 8, 1999, pp. 2071-2083. doi:10.1021/cr980032t
[31] A. Kadous, M. A. Didi and D. Villemin, “A New Sorbent for Uranium Extraction: Ethylenediamino Tris(methylenephosphonic) Acid Grafted on Polystyrene Resin,” Journal of Radioanalytical and Nuclear Chemistry, Vol. 284, No. 2, 2010, pp. 431-438. doi:10.1007/s10967-010-0495-7

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.