Morphological and chemical aspects of Chlorella pyrenoidosa, Dunaliella tertiolecta, Isochrysis galbana and Tetraselmis gracilis microalgae

DOI: 10.4236/ns.2013.57094   PDF   HTML     5,306 Downloads   8,346 Views   Citations


This study evaluates the growth and chemical composition of the following marine microalgae: Dunaliella tertiolecta, Isochrysis galbana, and Tetraselmis gracilis and the chemical composition of Chlorella pyrenoidosa. Microalgae can produce a number of compounds of high commercial value for the industry, mainly for the food industry. The growth kinetics, cell volume, pigments, carbohydrates, proteins, lipids, and fatty acid and amino acid composition were evaluated. I. galbana had the largest number of cells per mL-1 (107), concentration of carotenoids (6.33 μg·mL-1), and carbohydrates (34.32%). D. tertiolecta and T. gracilis had the highest cell volume (560.6 and 592.7 μm3, respectively), the highest amount of total dry biomass. D. tertiolecta had the highest chlorophyll concentration (9.05 μg·mL-1), and C. pyrenoidosa had the highest protein (48.16%) and lipid (14.30%) content. The marine species D. Tertiolecta, I. galbana, and T. gracilis had high levels of monounsaturated fatty acids (C18:1 n9), and C. pyrenoidosa was high in polyunsaturated fatty acids (C18:2 n6 and C18:3 n3), indicating the present high nutritional value fatty acids. The microalgae studies showed a composition of amino acids that meet the nutritional requirements recommended by the FAO g·100 g-1 (FAO/WHO/UN, 1985) for adults and children (2 - 5 years), indicating that these proteins can be used in foods.

Share and Cite:

Gorgônio, C. , Aranda, D. and Couri, S. (2013) Morphological and chemical aspects of Chlorella pyrenoidosa, Dunaliella tertiolecta, Isochrysis galbana and Tetraselmis gracilis microalgae. Natural Science, 5, 783-791. doi: 10.4236/ns.2013.57094.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Andrade, M.R. and Costa, J.A.V. (2008) Cultivo da mic roalga Spirulina platensis em fontes alternativas de nu trientes. Ciênc Agrotec Lavras, 32, 1551-1556.
[2] Bertoldi, F.C., Sant’anna, E. and Oliveira, J.L.B. (2008) Revisao: Biotecnologia de microalgas. B. CEPPA, 26, 9-20.
[3] Campos, V.B., Barbarino, E. and Lourenco, S.O. (2010) Crescimento e composicao química de dez espécies de microalgas marinhas em cultivos estanques. Ciência Ru ral, 40, 339-347.
[4] Derner, R.B., Ohse, S., Villela, M., et al. (2006) Micro algas, produtos e aplicacoes. Ciência Rural, 36, 1959 1967. doi:10.1590/S0103-84782006000600050
[5] Harun, R., Singh, M., et al. (2009) Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sustain Energy, 14, 1037-1047. doi:10.1016/j.rser.2009.11.004
[6] Herrero, M., Cifuentes, A. and Ibanez, E. (2006) Sub and supercritical fluid extraction of functional ingredients from different natural sources: Plants, foodby-products, algae and microalgae: A review. Food Chemistry, 98, 136-148. doi:10.1016/j.foodchem.2005.05.058
[7] Mata, T.M., Martins, A.A. and Caetano, N.S. (2010) Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14, 217-232. doi:10.1016/j.rser.2009.07.020
[8] Radmann, E.M. and Costa, J.A.V. (2008) Conteúdo lipí dico e composicao de ácidos graxos de microalgas expo stas aos gases CO2, SO2 e NO. Quim. Nova, 31, 1609. doi:10.1590/S0100-40422008000700002
[9] Spolaore, P., Joannis-Cassan, C. and Duran, E. (2006) Re view: Commercial applications of microalgae. Journal of Bioscience and Bioengineerin, 101, 87-96. doi:10.1263/jbb.101.87
[10] Chen, W., Zhang, C., Song, L., et al. (2009) A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. Journal of Microbiologi cal Methods, 27, 41-47. doi:10.1016/j.mimet.2009.01.001
[11] Huang, G., Chen, F., Wei, D., et al. (2010) Biodiesel production by microalgal biotechnology. Applied Energy, 87, 38-46. doi:10.1016/j.apenergy.2009.06.016
[12] Brown, M.R., Jeffrey, S.W., Volkman, J.K., et al. (1997) Nutritional properties of microalgae for mariculture. Aqua culture, 151, 315-331. doi:10.1016/S0044-8486(96)01501-3
[13] Martínez-Fernández, E.., Salmón, H. and Southgate, A.P.C. (2006) The nutritional value of seven species of tropical microalgae for black-lip pearl oyster (Pinctada marga ritifera, L.) larvae. Aquaculture, 257, 491-503. doi:10.1016/j.aquaculture.2006.03.022
[14] Strickland, J.D.H. and Parsons, T.R. (1968) A practical handbook of seawater analysis. Journal of the Fisheries Research Board of Canada., Ottawa, 311 pages.
[15] Lourenco, S.O. (2006) Cultivo de microalgas marinhas: Princípios e aplicacoes. Rima, Sao Carlos, 606 pages.
[16] Sawayama, S., Minowa, T. and Yokoyama, S.Y. (1999) Possibility of renewable energy production and CO2 mitigation by thermochemical liquefaction of microalgae. Biomass and Bioenergy, 17, 33-39. doi:10.1016/S0961-9534(99)00019-7
[17] Thorondsen, J. (1993) Identfying marine phytoplankton. Academic Press, New York, 591-729.
[18] Zelitch, I. (1971) Photosynthesis, photorespiration and plant productivity. Academic Press, 275.
[19] Guillard, R.R.L. (1975) Culture of phytoplankton for feeding marine invertebrates. In: Smith, W.L. and Chanley, M.H., Eds., Culture of Marine Invertebrates Animals, Plenum Publishing, New York, 29-60. doi:10.1007/978-1-4615-8714-9_3
[20] Hillebrand, H., Dürselem, C., Kirshtel, D., et al. (1999) Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology, 35, 403-424. doi:10.1046/j.1529-8817.1999.3520403.x
[21] Jeffrey, S.W. and Humphrey, G. F. (1975) New spectrophotometric equations for determinig chlorophylls a b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemie und Physiologie der Pflanzen, 167, 191-194.
[22] Lorenzen, C.J. (1967) Determination of chlorophyll and phaeophytin: Spectrophotometric equations. Limnology and Oceanography, 12, 343-346 doi:10.4319/lo.1967.12.2.0343
[23] Zaia, D.A.M., Zaia, C.T.B.V. and Lichtig, J. (1998) De terminacao de proteínas totais via espectrofometria: van tagens e desvantagens dos métodos existentes. Química Nova, 21, 787-793. doi:10.1590/S0100-40421998000600020
[24] Dubois, M., Guilles, K.A., Hamilton, J.K., et al. (1956) Calorimetric method for the determination of sugars and related substances. Analytical Chemistry, 18, 350-356. doi:10.1021/ac60111a017
[25] Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Bio chemistry, 72, 248-254. doi:10.1016/0003-2697(76)90527-3
[26] Viêgas, C.V. (2010) Extracao e caracterizacao dos lipí deos da microalga Chlorella pyrenoidosa visando à pro ducao de ésteres graxos. Dissertacao Universidade Fede ral do Rio Grande (FURG), Rio Grande.
[27] Folch, J., Lees, M. and Stanley, G.H.S. (1956) A simple method for the isolation and purification of total lipids from animal tissues. The Journal of Biological Chemistry, 497-509.
[28] Yoo, C., Jun, S.Y., Lee, J.Y., et al. (2010) Selection of microalgae for lipid production under high levels carbon dioxide. Bioresource Technology, 101, 71-74. doi:10.1016/j.biortech.2009.03.030
[29] EN14103 (2003) Derivados deóleo e gordura-ésteres Metílicos de ácidos Graxos (FAME)-Determinacao quantitativa de ésteres e ésteres Metílicos de ácido Linoléico.
[30] Cohen, A.M. and Michaud, D.P. (1993) Synthesis of fluorescent derivatizing reagent, 6-aminoquinolyl-N-hy droxysuccinimidyl carbamate, and its application for the analysis of hydrolysate amino acids via high-performance liquid chromatography. Analytical Biochemistry, 211, 279-287. doi:10.1006/abio.1993.1270
[31] Fábregas, J., Ferrón, L., Gamallo, Y., et al. (1994) Improvement of growth and cell productivity by aeration rate in cultures of the marine microalga Dunaliella tertiolecta. Bioresource Technology, 48, 107-111. doi:10.1016/0960-8524(94)90196-1
[32] Lavin, P.L.S. (2000) Nitrogênio organico intracelular: Extracao, papel fisiológico e acumulacao por microalgas marinhas, em cultivos estanques. Dissertacao Universi dade Federal Fluminense, Niterói, Rio de Janeiro.
[33] Ohse, S., Derner, R.B., Ozório, R.A., et al. (2009) Pro ducao de biomassa e teores de carbono, hidrogênio, nitro gênio e proteínas em microalgas. Ciencia Rural, 39, 1760 1767. doi:10.1590/S0103-84782009000600019
[34] Fidalgo, J.P., Cid, A., Torres, E., et al. (1998) Effects of nitrogen source and growth phase on proximate bio chemical composition, lipid classes and fatty acid profile of the marine microalga Isochrysis galbana. Aquaculture, 166, 105-116. doi:10.1016/S0044-8486(98)00278-6
[35] Junior, A.M.M., Neto, E.B., Koening, M.L., et al. (2006) Composicao química de microalgas em cultivo semi intensivo: Chaetoceros gracilis Schutt, Isochrysis gal bana Parke e Thalassiosira weissflogii (Grunow) G. Fry xell & Hasle. Revista Ciência Agronomica, 37, 142-148.
[36] Valenzuela-Espinoza, E., Millán-Núnez, R. and Núnez Cebrero, F. (2002) Protein, carbohydrate, lipid and chlorophyll a content in Isochrysis aff. galbana (clone Tiso) cultured with a low cost alternative to the f/2 medium. Aquacultural Engineering, 25, 207-216. doi:10.1016/S0144-8609(01)00084-X
[37] Falkowski, P.G. and Raven, J.A. (1997) Aquatic photo synthesis. Blackwell Scientific, Oxford.
[38] Ferruzzi, M.G. and Blakeslee, J. (2007) Digestion, absorption, and cancer preventative activity of dietary chlorophyll derivatives. Nutrition Research, 27, 1-12. doi:10.1016/j.nutres.2006.12.003
[39] Gomes, F.S. (2007) Carotenóides: Uma possível protecao contra o desenvolvimento de cancer. Revista de Nutricao, 20, 537-548.
[40] Gomes, M.M., Saunders, C. and Accioly, E. (2005) Papel da vitamina A na prevencao do estresse oxidativo em recém-nascidos. Revista Brasileira de Saúde Materno In fantil, 5, 275-282.
[41] Lanfer-Marquez, U.M. (2003) O papel da clorofila na alimentacao humana: Uma revisao. Revista Brasileira de Ciências Farmacêuticas, 39, 227-242.
[42] Oliveira, G.S., Figueiredo, á.S.P., Santos, R.S., et al. (2007) Efeito da suplementacao de beta-caroteno na pressao arterial de ratos. Revista de Nutricao, 20, 39-45. doi:10.1590/S1415-52732007000100004
[43] Franco, G. (2002) Tabela de composicao química dos alimentos. 5th Edition, Atheneu, Sao Paulo.
[44] Brown, M. (1991) The amino-acid and sugar composition of 16 species of microalgae used in mariculture. Journal of Experimental Marine Biology and Ecology, 145, 79-99. doi:10.1016/0022-0981(91)90007-J
[45] Sánches, S., Martinez, M.E. and Espinola, F. (2000) Bio mass production and biochemical variability of marine microalga Isochrysis galbana in relation to culture medium. Biochemical Engineering Journal, 6, 13-18. doi:10.1016/S1369-703X(00)00071-1
[46] Soares, A. and Clavico, E. (2005) Propriedades físico químicas da água. Universidade Federal Fluminense, Niterói.
[47] Renaud, S.M., Luong-van, T., Lambrinidis, G., et al. (2002) Effect of temperature on growth, chemical com position and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture, 211, 195-214. doi:10.1016/S0044-8486(01)00875-4
[48] Ogbonna, J.C. and Tanaka, H. (1996) Night biomass loss and changes in biochemical composition of cells during light/dark cyclic culture of Chlorella pyrenoidosa. Journal of Fermentation and Bioengineering, 82, 558-564. doi:10.1016/S0922-338X(97)81252-4
[49] Moraes, M.S.A. (2008) Biodiesel de sebo: Avaliacao de propriedades e testes de consumo em motor a diesel. Dissertacao Universidade Federal do Rio Grande do Sul, Porto Alegre.
[50] Reitan, K.I., Rainuzzo, J.R., Oie, G., et al. (1997) A re view of the nutritional effects of algae in marine fish larvae. Aquaculture, 155, 207-221. doi:10.1016/S0044-8486(97)00118-X
[51] Aued-Pimentel, S., Takemoto, E., Kumagai, E.E., et al. (2008) Determinacao da diferenca entre o valor real e o teórico do triglicerídeo ECN 42 para a deteccao de adul teracao em azeites de oliva comercializados no Brasil. Quim. Nova, 31, 31-34. doi:10.1590/S0100-40422008000100006
[52] Bertol, T.M., Moraes, N. and Franke, M.R. (2001) Substituicao parcial do farelo de soja por proteína tex turizada de soja na dieta de leitoes desmamados. Revista Brasileira de Zootecnia, 30, 141-149. doi:10.1590/S1516-35982001000100021
[53] Khattab, R.Y., Arntfield, S.D. and Nyachoti, C.M. (2009) Nutritional quality of legume seeds as affected by some physical treatments, part 1: Protein quality evaluation. Food Science and Technology, 42, 1107-1112.
[54] Karr-Lilienthal, L.K., Grieshop, C.M., Spears, J.K., et al. (2005) Amino acid, carbohydrate, and fat composition of soybean meals prepared at 55 commercial US soybean processing plants. Journal of Agricultural and Food Chemistry, 53, 2146-2150. doi:10.1021/jf048385i
[55] Rozan, P., Yu-Haey, K. and Lambein, F. (2001) Amino acids in seeds and seedlings of the genus Lens. Phytochemistry, 58, 281-289. doi:10.1016/S0031-9422(01)00200-X
[56] FAO. (1985) Energy and protein requirements. Technical Report, Joint FAO/WHO/ONU Expert Consulation.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.