Paroxetine Augments while Naloxone Abolishes the Analgesic Effect of Paracetamol in Acute Nociceptive Pain in Mice

Abstract

The mechanism(s) of analgesic action of paracetamol (acetaminophen; N-acetyl-p-aminophenol) remains controversial. Previous studies on rats suggested that the antinociceptive action of paracetamol might involve the central descending inhibitory pain pathways recruiting both a serotoninergic and an opioidergic system. This study explores this issue in mice using paroxetine, the most potent selective serotonin re-uptake inhibitor, and the nonselective opioid pure antagonist naloxone. Animals were divided into two main groups for two separate experiments, each subdivided into 3 subgroups. In both experiments; the first group served as control, the second group received paracetamol (200 mg/kg, i.p). In one experiment, the third group received paroxetine (20 mg/kg p.o for 7 days) before paracetamol. In the other experiment, animals of the third group were pretreated with naloxone (5 mg/kg, i.p) 30 min before paracetamol. The antinociceptive effect of paracetamol was tested using the hot plate test. Paracetamol displayed a significant antinociceptive activity that was augmented by pretreatment with paroxetine as was shown by maintenance of its effect beyond that shown by paracetamol alone. On the other hand, pretreatment with naloxone abolished paracetamol’s antinociceptive activity in the hot-plate test. These results extended the previous observation in rats that the antinociceptive effect of paracetamol involved activation of a central descending pain inhibitory pathway with serotonin and opioidergic peptides being potential mediators recruited.

Share and Cite:

M. Abdalla, W. Malki and M. Ahmed, "Paroxetine Augments while Naloxone Abolishes the Analgesic Effect of Paracetamol in Acute Nociceptive Pain in Mice," Pharmacology & Pharmacy, Vol. 4 No. 4, 2013, pp. 398-405. doi: 10.4236/pp.2013.44057.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] J. S. Walker, “NSAID: An Update on Their Analgesic Effects,” Clinical and Experimental Pharmacology and Physiology, Vol. 22, No. 11, 1995, pp. 855-860. doi:10.1111/j.1440-1681.1995.tb01950.x
[2] R. Björkman, “Central Antinociceptive Effects of Non-Steroidal Anti-Inflammatory Drugs and Paracetamol,” Acta Anaesthesiologica Scandinavica, Vol. 39, Suppl. 103, 1995, pp. 2-44. doi:10.1111/j.1399-6576.1995.tb04249.x
[3] T. D. Warner, I. Vojnovic, F. Giuliano, R. Jiménez, D. Bishop-Bailey and J. A. Mitchell, “Cyclo-Oxygenases 1, 2, and 3 and the Production of Prostaglandin I2: Investigating the Activities of Acetaminophen and Cyclooxygenase-2-Selective Inhibitors in Rat Tissues,” Journal of Pharmacology and Experimental Therapeutics, Vol. 310, No. 2, 2004, pp. 642-647. doi:10.1124/jpet.103.063875
[4] J. R. Vane and R. M. Botting, “A Better Understanding of Anti-Inflammatory Drugs Based on Isoforms of Cyclooxygenase (COX-1 and COX-2),” Advances in Prostaglandin, Thromboxane, and Leukotriene Research, Vol. 23, 1995, pp. 41-48.
[5] S. P. Clissold, “Paracetamol and Phenacetin,” Drugs, Vol. 32, Suppl. 4, 1986, pp. 46-59.
[6] K. H. Carlsson, W. Monzel and I. Jurna, “Depression by Morphine and the Non-Opioid Analgesic Agents Metamizol (Dipyrone), Lysine Acetylate and Paracetamol, of Activity in Rat Thalamus Neurons Evoked by Electrical Stimulation of Nociceptive Afferents,” Pain, Vol. 32, No. 3, 1988, pp. 313-326. doi:10.1016/0304-3959(88)90043-7
[7] C. A. N. Chen and C. R. Chapman, “Aspirin Analgesia Evaluated by Event Related Potentials in Man: Possible Central Action in Brain,” Experimental Brain Research, 39, No. 4, 1980, pp. 359-364. doi:10.1007/BF00239300
[8] M. S. Abdel-Alim, B. Sjoqvist and E. Anggard, “Inhibition of Prostaglandin Synthesis in Rat Brain,” Acta Pharmacologica et Toxicologica, Vol. 43, No. 4, 1978, pp. 266-272. doi:10.1111/j.1600-0773.1978.tb02264.x
[9] A. B. Malberg and T. L. Yaks, “Antinociceptive Actions of Spinal Anti-Inflammatory Agents on the Formalin Test in the Rat,” Journal of Pharmacology and Experimental Therapeutics, Vol. 263, No. 1, 1992, pp. 136-146.
[10] M. Sandrini, G. Vitale, M. Dondi and L. A. Pini, “Effects of Acetylsalicylic Acid on Serotonin Brain Receptor Subtypes,” General Pharmacology, Vol. 26, No. 4, 1995, pp. 737-741. doi:10.1016/0306-3623(94)00252-I
[11] J. C. Willer, A. Roby and D. Le Bars, “Psychophysical and Electrophysiological Approaches to the Pain-Relieving Effects of Heterotopic Nociceptive Stimuli,” Brain, 107, No. 4, 1984, pp. 1095-1112. doi:10.1093/brain/107.4.1095
[12] D. D. Price and J. G. McHaffie, “Effects of Heterotopic Conditioning Stimuli on First and second Pain: A Psychophysical Evaluation in Humans,” Pain, Vol. 34, No. 3, 1988, pp. 245-252. doi:10.1016/0304-3959(88)90119-4
[13] J. D. Talbot, G. H. Duncan and M. C. Bushnell, “Effects of Diffuse Noxious Inhibitory Controls (DNICs) on the Sensory-Discriminative Dimension of Pain Perception,” Pain, Vol. 36, No. 2, 1989, pp. 231-238. doi:10.1016/0304-3959(89)90028-6
[14] N. Julien and S. Marchand, “Endogenous Pain Inhibitory Systems Activated by Spatial Summation Are Opioid Mediated,” Neuroscience Letters, Vol. 401, No. 3, 2006, pp. 256-260. doi:10.1016/j.neulet.2006.03.032
[15] A. Alloui, C. Chassaing, J. Schimidt, D. Ardidi, C. Dubray and A. Cloarec, “Paracetamol Exerts a Spinal, Tropisetron-Reversible, Antinociceptive Effect in an Inflammatory Pain Model in Rats,” European Journal of Pharmacology, Vol. 443, No. 1-3, 2002, pp. 71-77. doi:10.1016/S0014-2999(02)01578-9
[16] S. R. Glaum, H. K. Proudfit and E. G. Anderson, “Reversal of the Antinociceptive Effects of Intrathecally Administered Serotonin in the Rat by a Selective 5-HT3 Receptor Antagonist,” Neuroscience Letters, Vol. 95, No. 1-3, 1988, pp. 313-317. doi:10.1016/0304-3940(88)90677-5
[17] S. R. Glaum, H. K. Proudfit and E. G. Anderson, “5-HT3 Receptors Modulate Spinal Nociceptive Reflexes,” Brain Research, Vol. 510, No. 1, 1990, pp. 12-16. doi:10.1016/0006-8993(90)90721-M
[18] B. Bannwarth, P. Netter, F. Lapicque, P. Gillet, P. Pére, E. J. Boccard and A. Eschalier, “Paracetamol Exerts a Spinal Antinociceptive Effect Involving an Indirect Interaction with 5-Hydroxytryptamine 3 Receptors: In Vivo and In Vitro Evidence,” Journal of Pharmacology and Experimental Therapeutics, Vol. 278, No. 1, 1996, pp. 8-14.
[19] L. Bardin, J. Schmidt, A. Alloui and A. Eschalier, “Effect of Intrathecal Administration of Serotonin in Chronic Pain Models in Rats,” European Journal of Pharmacology, Vol. 409, No. 1, 2000, pp. 37-43. doi:10.1016/S0014-2999(00)00796-2
[20] A. Srikiatkhachorn, N. Trasu and P. Govitrapong, “Acetaminophen Induced Antinociception via Central 5-HT 2A Receptors,” Neurochemistry International, Vol. 34, No. 6, 1999, pp. 491-498. doi:10.1016/S0197-0186(99)00023-6
[21] G. G. Graham and K. F. Scott, “Mechanism of Action of Paracetamol,” American Journal of Therapeutics, Vol. 12, No. 1, 2005, pp. 46-55. doi:10.1097/00045391-200501000-00008
[22] R. Björkman, “Central Antinociceptive Effects of Non-Steroidal Anti-Inflammatory Drugs and Paracetamol,” Acta Anaesthesiologica Scandinavica, Vol. 39, Suppl. 103, 1995, pp. 2-44. doi:10.1111/j.1399-6576.1995.tb04249.x
[23] R. B. Raffa, J. R. Stone and D. J. Tallarida, “Discovery of ‘Self-Synergistic’ Spinal/Supraspinal Antinociception Produced by Acetaminophen (Paracetamol),” Journal of Pharmacology and Experimental Therapeutics, Vol. 295, No. 1, 2000, pp. 291-294.
[24] R. B. Raffa, J. R. Stone and D. J. Tallarida, “Unexpected and Pronounced Anti-Nociceptive Synergy between Spinal Acetaminophen (Paracetamol) and Phentolamine,” European Journal of Pharmacology, Vol. 412, No. 2, 2001, pp. R1-R2. doi:10.1016/S0014-2999(01)00722-1
[25] G. Pickering, F. Moustafa, S. Desbrandes, J. M. Cardot, D. Roux and C. Dubray, “Paracetamol and Opioid Pathways: A Pilot Randomized Clinical Trial,” Fundamental & Clinical Pharmacology, Vol. 27, No. 3, 2013, pp. 339345.
[26] E. Richelson, “Where Are All the Novel Antidepressants?” Current Opinion in Investigational Drugs, Vol. 2, No. 2, 2001, pp. 256-258.
[27] M. Bourin, A. J. Fiocco and F. Clenet, “How Valuable Are Animal Models in Defining Antidepressant Activity?” Human Psychopharmacology, Vol. 16, No. 1, 2001, pp. 9-21. doi:10.1002/hup.178
[28] T. Takeuchi, T. Owa, T. Nishino and C. Kamei, “Assessing Anxiolytic-Like Effects of Selective Serotonin Reuptake Inhibitors and Serotonin-Noradrenaline Reuptake Inhibitors Using the Elevated plus Maze in Mice,” Methods & Findings in Experimental & Clinical Pharmacology, Vol. 32, No. 2, 2010, pp. 113-121.
[29] R. M. Rezende, D. S. França, G. B. Menezes, W. G. dos Rei, Y. S. Bakhle and J. N. Francischi, “Different Mechanisms Underlie the Analgesic Actions of Paracetamol and Dipyrone in a Rat Model of Inflammatory Pain,” British Journal of Pharmacology, Vol. 153, No. 4, 2008, pp. 760-768. doi:10.1038/sj.bjp.0707630
[30] N. E. Duman, M. Kesim, M. Kadioglu, E. Yaris, N. I. Kalyoncu and N. Erciyes, “Possible Involvement of Opioidergic and Serotonergic Mechanisms in Antinociceptive Effect of Paroxetine in Acute Pain,” Journal of Pharmacological Sciences, Vol. 94, No. 2, 2004, pp. 161-165. doi:10.1254/jphs.94.161
[31] T. R. Lavich, R. S. Cordeiro, P. M. Silva and M. A. Martins, “A Novel Hot-Plate Test Sensitive to Hyperalgesic Stimuli and Non-Opioid Analgesics,” Brazilian Journal of Medical and Biological Research, Vol. 38, No. 3, 2005, pp. 45-51. doi:10.1590/S0100-879X2005000300016
[32] L. A. Pini, G. Vitale, A. Ottani and M. Sandrini, “Naloxone-Reversible An-ti-Nociception by Paracetamol in the Rat,” Journal of Pharmacology and Experimental Therapeutics, Vol. 280, No. 2, 1997, pp. 934-940.
[33] S. H. Ferreira, “Prostaglandins, Aspirin like Drugs and Analgesia,” Nature, Vol. 240, 1972, pp. 200-203.
[34] P. A. Insel, “Analgesic-Antipyretic and Anti-Inflammatory Agents and Drugs Employed in the Treatment of Gout,” In: J. G. Hardman, L. E. Limbird, P. B. Molinoff, R. W. Ruddon and A. Goodman Gilman, Eds., Goodman and Gilman’s the Pharmacological Basis of Therapeutics, 9th Edition, McGraw-Hill, New York, 1996, pp. 617657.
[35] J. A. Mitchell, P. Akarasereenont, C. Thiemermann, R. J. Flower and J. R. Vane, “Selectivity of Non Steroidal Anti-Inflammatory Drugs as Inhibitors of Constitutive and Inducible Cyclooxygenase,” Proceedings of the National Academy of Sciences, Vol. 90, No. 24, 1994, pp. 11693-11697. doi:10.1073/pnas.90.24.11693
[36] E. Seppala, O. Laitinen and H. Vapaaltalo, “Comparative Effects of Acetyl-Salicylic Acid, Indomethacin and Paracetamol on Metabolites of Arachidonic Acid in Plasma and Urine in Man,” International Journal of Clinical Pharmacology Research, Vol. 4, No. 3, 1983, pp. 265269.
[37] H. Bippi and Jc. Frohich, “Effects of Acetylsalicylic Acid and Paracetamol Alone and in Combination on Prostanoid Synthesis in Man,” British Journal of Clinical Pharmacology, Vol. 29, No. 3, 1990, pp. 305-310. doi:10.1111/j.1365-2125.1990.tb03640.x
[38] J. R. Vane, “Inhibition of Prostaglandin Synthesis as a Mechanism of Action for Aspirin like Drugs,” Nature New Biology, Vol. 231, No. 25, 1971, pp. 232-235.
[39] J. Bonnefont, E. Chapuy, E. Clottes, A. Alloui and A. Eschalier, “Spinal 5-HT1A Receptors Differentially Influence Nociceptive Processing According to the Nature of the Noxious Stimulus in Rats: Effect of WAY-100635 on the Antinociceptive Activities of Paracetamol, Venlafaxine and 5-HT,” Pain, Vol. 114, No. 3, 2005, pp. 482490. doi:10.1016/j.pain.2005.01.019
[40] A. Cloarec, “Effect of Acetaminophen on Monoaminergic System in the Rat Central Nervous System,” NaunynSchmiedeberg’s Archives of Pharmacology, Vol. 364, No. 6, 2001, pp. 534-537. doi:10.1007/s002100100484
[41] K. H. Carlsson and I. Jurna, “Central Analgesic Effects of Paracetamol Manifested by Depression of Nociceptive Activity in Thalamic Neurons of the Rat,” Neuroscience Letters, Vol. 77, No. 3, 1987, pp. 339-343. doi:10.1016/0304-3940(87)90524-6
[42] R. Botting and S. S. Ayoub, “COX-3 and the Mechanism of Action of Acetaminophen/Paracetamol,” Prostaglandins, Leukotrienes and Essential Fatty Acids, Vol. 72, No. 2, 2005, pp. 85-87. doi:10.1016/j.plefa.2004.10.005
[43] R. M. Botting, “Mechanism of Action of Paracetamol: Is There a Cyclooxygenase 3?” Clinical Infectious Diseases, Vol. 31, Suppl. 5, 2000, pp. S202-S210.
[44] J. Bonnefont, J. P. Courade, A. Alloui and A. Eschalier, “Antinociceptive Mechanism of Action of Paracetamol,” Drugs, Vol. 63, No. 2, 2003, pp. 1-4. doi:10.2165/00003495-200363992-00002
[45] R. B. Raffa, E. A. Walker and S. N. Sterious, “Opioid Receptors and Paracetamol (Acetaminophen),” European Journal of Pharmacology, Vol. 503, No. 1, 2004, pp. 209-210. doi:10.1016/j.ejphar.2004.08.055
[46] H. L. Fields and A. I. Basbaum, “Central Nervous System Mechanisms of Pain Modulation,” In: P. D. Wall and R. Melzack, Eds. Textbook of Pain, 3rd Edition, Churchill Livingstone, Edinburgh, 1994, pp. 243-257.
[47] M. Sasaki, K. Ishizaki, H. Obata and F. Goto, “Effects of 5-HT2 and 5-HT3 Receptors on the Modulation of Nociceptive Transmission in Rat Spinal Cord According to the Formalin Test,” European Journal of Pharmacology, Vol. 424, No. 1, 2001, pp. 45-52. doi:10.1016/S0014-2999(01)01117-7
[48] A. Tjolsen, A. Lund and K. Hole, “Antinociceptive Effect of Paracetamol in Rats Is Partly Dependent on Spinal Serotonergic Systems,” European Journal of Pharmacology, Vol. 193, No. 2, 1991, pp. 193-201. doi:10.1016/0014-2999(91)90036-P
[49] L. A. Pini, M. Sandrini and G. Vitale, “The Antinociceptive Action of Paracetamol Is Associated with Changes in the Serotoninergic System in the Rat Brain,” European Journal of Pharmacology, Vol. 308, No. 1, 1996, pp. 3140. doi:10.1016/0014-2999(96)00261-0
[50] M. Sandrini, G. Vitale, A. Ottani and L. A. Pini, “The Potentiation of Analgesic Activity of Paracetamol plus Morphine Involves the Serotoninergic System in Rat Brain,” Inflammation Research, Vol. 48, No. 3, 1999, pp. 120-127. doi:10.1007/s000110050434
[51] H. Vanegas and V. Tortorici, “Opioidergic Effects of Nonopioid Analgesics on the Central Nervous System,” Cellular and Molecular Neurobiology, Vol. 22, No. 5-6, 2002, pp. 655-661. doi:10.1023/A:1021896622089
[52] P. Sacerdote, G. Moza, P. Mantegazza and A. E. Panerai, “Diclofenac and Pirprofen Modify Pituitary and Hypothalamic Beta-Endorphin Concentrations,” Pharmacological Research Communications, Vol. 17, No. 8, 1983, pp. 679-684. doi:10.1016/0031-6989(85)90085-2
[53] M. Baraldi, R. Poggioli, M. Santi, A. V. Verogoni and A. Bertolini, “Antidepressantsand Opiates Interactions: Pharmacological and Biochemical Evidences,” Pharmacological Research Communications, Vol. 15, No. 9, 1983, pp. 843-857. doi:10.1016/S0031-6989(83)80092-7
[54] K. C. Bentley and T. W. Head, “The Additive Analgesic Efficacy of Acetaminophen,1000 mg, and Codeine, 60 mg, in Dental Pain,” Clinical Pharmacology & Therapeutics, Vol. 42, No. 6, 1987, pp. 634-640. doi:10.1038/clpt.1987.211
[55] R. Malmgren, “The Central Serotoninergic System,” Cephalalgia, Vol. 10, 1990, pp. 199-204. doi:10.1046/j.1468-2982.1990.1004204.x

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.