[1]
|
D. E. Quelle, F. Zindy, R. A. Ashmun, et al., “Alternative Reading Frames of the INK4a Tumor Suppressor Gene Encode Two Unrelated Proteins Capable of Inducing Cell Cycle Arrest,” Cell, Vol. 83, No. 6, 1995, pp. 993-1000.
doi:10.1016/0092-8674(95)90214-7
|
[2]
|
S. W. Lowe and C. J. Sherr, “Tumor Suppression by INK4a-Arf: Progress and Puzzles,” Current Opinion in Genetics & Development, Vol. 13, No. 1, 2003, pp. 77-83. doi:10.1016/S0959-437X(02)00013-8
|
[3]
|
M. Serrano, H. Lee, L. Chin, et al., “Role of the INK4a Locus in Tumor Suppression and Cell Mortality,” Cell, Vol. 85, No. 1, 1996, pp. 27-37.
doi:10.1016/S0092-8674(00)81079-X
|
[4]
|
P. Krimpenfort, K. C. Quon, W. J. Mooi, et al., “Loss of p16INK4a Confers Susceptibility to Metastatic Melanoma in Mice,” Nature, Vol. 413, No. 6851, 2001, pp. 83-86.
doi:10.1038/35092584
|
[5]
|
M. Serrano, G. J. Hannon and D. Beach, “A New Regulatory Motif in Cell-Cycle Control Causing Specific Inhibition of Cyclin D/CDK4,” Nature, Vol. 366, No. 6456, 1993, pp. 704-707. doi:10.1038/366704a0
|
[6]
|
C. J. Sherr, “Principles of Tumor Suppression,” Cell, Vol. 116, No. 2, 2004, pp. 235-246.
doi:10.1016/S0092-8674(03)01075-4
|
[7]
|
E. Sharpless and L. Chin, “The INK4a/ARF Locus and Melanoma,” Oncogene, Vol. 22, No. 20, 2003, pp. 3092-3098. doi:10.1038/sj.onc.1206461
|
[8]
|
R. Ben-Saadon, I. Fajerman, T. Ziv, et al., “The Tumor Suppressor Protein p16INK4a and the Human Papillomavirus Oncoprotein-58 E7 Are Naturally Occurring LysineLess Proteins That Are Degraded by the Ubiquitin System. Direct Evidence for Ubiquitination at the N-Terminal Residue,” The Journal of Biological Chemistry, Vol. 279, No. 40, 2004, pp. 41414-41421.
doi:10.1074/jbc.M407201200
|
[9]
|
S. Bates, A. C. Phillips, P. A. Clark, et al., “p14ARF Links the Tumour Suppressors RB and p53,” Nature, Vol. 395, No. 6698, 1998, pp. 124-125. doi:10.1038/25867
|
[10]
|
I. Palmero, C. Pantoja and M. Serrano, “p19ARF Links the Tumour Suppressor p53 to Ras,” Nature, Vol. 395, No. 6698, 1998, pp. 125-126. doi:10.1038/25870
|
[11]
|
A. Radfar, I. Unnikrishnan, H. W. Lee, et al., “p19ARF Induces p53-Dependent Apoptosis during Abelson VirusMediated Pre-B Cell Transformation,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 95, No. 22, 1998, pp. 13194-13199.
doi:10.1073/pnas.95.22.13194
|
[12]
|
F. Zindy, R. T. Williams, T. A. Baudino, et al., “ARF Tumor Suppressor Promoter Monitors Latent Oncogenic Signals in Vivo,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 100, No. 26, 2003, pp. 15930-15935.
doi:10.1073/pnas.2536808100
|
[13]
|
R. Honda, and H. Yasuda, “Association of p19ARF with Mdm2 Inhibits Ubiquitin Ligase Activity of Mdm2 for Tumor Suppressor p53,” The EMBO Journal, Vol. 18, No. 1, 1999, pp. 22-27. doi:10.1093/emboj/18.1.22
|
[14]
|
C. A. Midgley, J. M. Desterro, M. K. Saville, et al., “An N-Terminal p14 ARF Peptide Blocks Mdm2-Dependent Ubiquitination in Vitro and Can Activate p53 in Vivo,” Oncogene, Vol. 19, No. 19, 2000, pp. 2312-2323.
|
[15]
|
X. Li, D. M. Lonard, S. Y. Jung, et al., “The SRC-3/AIB1 Coactivator Is Degraded in a Ubiquitinand ATP-Independent Manner by the REGγ Proteasome,” Cell, Vol. 124, No. 2, 2006, pp. 381-392.
doi:10.1016/j.cell.2005.11.037
|
[16]
|
X. Chen, L. F. Barton, Y. Chi, et al., “Ubiquitin-Independent Degradation of Cell-Cycle Inhibitors by the REGγ Proteasome,” Molecular Cell, Vol. 26, No. 6, 2007, pp. 843-852. doi:10.1016/j.molcel.2007.05.022
|
[17]
|
X. Li, L. Amazit, W. Long, et al., “Ubiquitinand ATPIndependent Proteolytic Turnover of p21 by the REGgamma-Proteasome Pathway,” Molecular Cell, Vol. 26, No. 6, 2007, pp. 831-842.
doi:10.1016/j.molcel.2007.05.028
|
[18]
|
T. Okamura, S. Taniguchi, T. Ohkura, et al., “Abnormally High Expression of Proteasome Activator-Gamma in Thyroid Neoplasm,” The Journal of Clinical Endocrinology & Metabolism, Vol. 88, No. 3, 2003, pp. 1374-1383.
|
[19]
|
M. Roessler, W. Rollinger, L. Mantovani-Endl, et al., “Identification of PSME3 as a Novel Serum Tumor Marker for Colorectal Cancer by Combining Two-Dimensional Polyacrylamide Gel Electrophoresis with a Strictly Mass Spectrometry-Based Approach for Data Analysis,” Molecular & Cellular Proteomics, Vol. 5, No. 11, 2006, pp. 2092-2101. doi:10.1074/mcp.M600118-MCP200
|
[20]
|
Y. Hong, K. S. Ho, K. W. Eu, et al., “A Susceptibility Gene Set for Early Onset Colorectal Cancer That Integrates Diverse Signaling Pathways: Implication for Tumorigenesis,” Clinical Cancer Research, Vol. 13, No. 4, 2007, pp. 1107-1114.
doi:10.1158/1078-0432.CCR-06-1633
|
[21]
|
H. L. Jia, Q. H. Ye, L. X. Qin, et al., “Gene Expression Profiling Reveals Potential Biomarkers of Human Hepatocellular Carcinoma,” Clinical Cancer Research, Vol. 13, No. 4, 2007, pp. 1133-1139.
doi:10.1158/1078-0432.CCR-06-1025
|
[22]
|
J. He, L. Cui, Y. Zeng, et al., “REGγ Is Associated with Multiple Oncogenic Pathways in Human Cancers,” BMC Cancer, Vol. 12, 2012, p. 75.
doi:10.1186/1471-2407-12-75
|
[23]
|
G. Yu, Y. Zhao, J. He, et al., “Comparative Analysis of REGγ Expression in Mouse and Human Tissues,” Journal of Molecular Cell Biology, Vol. 2, No. 4, 2010, pp. 192-198. doi:10.1093/jmcb/mjq009
|
[24]
|
G. Salvatore, T. C. Nappi, P. Salerno, et al., “A Cell Proliferation and Chromosomal Instability Signature in Anaplastic Thyroid Carcinoma,” Cancer Research, Vol. 67, No. 21, 2007, pp. 10148-10158.
doi:10.1158/0008-5472.CAN-07-1887
|
[25]
|
Y. Zhang, Y. Xiong and W. G. Yarbrough, “ARF Promotes MDM2 Degradation and Stabilizes p53: ARFINK4a Locus Deletion Impairs Both the Rb and p53 Tumor Suppression Pathways,” Cell, Vol. 92, No. 6, 1998, pp. 725-734. doi:10.1016/S0092-8674(00)81401-4
|
[26]
|
L. F. Barton, H. A. Runnels, T. D. Schell, et al., “Immune Defects in 28-kDa Proteasome Activator Gamma-Deficient Mice,” The Journal of Immunology, Vol. 172, No. 6, 2004, pp. 3948-3954.
|
[27]
|
I. Mao, J. Liu, X. Li, et al., “REGγ, a Proteasome Activator and beyond?” Cellular and Molecular Life Sciences, Vol. 65, No. 24, 2008, pp. 3971-3980.
doi:10.1007/s00018-008-8291-z
|
[28]
|
Z. Zhang and R. Zhang, “Proteasome Activator PA28 Gamma Regulates p53 by Enhancing Its MDM2-Mediated Degradation,” The EMBO Journal, Vol. 27, No. 6, 2008, pp. 852-864. doi:10.1038/emboj.2008.25
|