Thermal preference, tolerance and temperature-dependent respiration in the California sea hare Aplysia californica
Ana Denisse Re, Fernando Díaz, Alfredo Salas-Garza, Marco Gonzalez, Victor Cordero, Clara E. Galindo-Sanchez, Edna Sanchez-Castrejon, Adolfo Sánchez Zamora, Alexei Licea-Navarro
Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Ensenada Baja California, México.
Laboratorio de Biología Celular y Molecular, Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada Baja California, México.
Laboratorio de Ecofisiología de Organismos Acuáticos, Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada Baja California, México.
Laboratorio de Ecofisiología de Organismos Acuáticos, Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada Baja California, México;.
Laboratorio de Genómica Funcional, Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada Baja California, México.
Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Autónoma de México, Sisal, México.
DOI: 10.4236/as.2013.46A007   PDF    HTML   XML   3,923 Downloads   6,204 Views   Citations


The thermoregulatory behavior of sea hare Aplysia californica was determined in a horizontal thermal gradient; with a preferred temperature (PT) of 18.3°C for the day cycle and 20.8°C for the night cycle. The displacement velocity demonstrated an initial rate of 30 cm·1 and gradually the velocity diminished to 18 cm·1 with several fluctuations mainly at 02:00 am. Critical Temperature Maxima (CTMax refers to the temperature point where at least 50% of the experimental group have a loss of attachment) was measured at three acclimation temperatures (16°C, 19°C and 22°C). At the lowest acclimation temperature (16°C), 50% of the experimental group had an attachment loss at CTMax 32.7°C, and in a higher acclimation temperature (22°C) CTMax was 36.2°C. The Oxygen Consumption Rate (OCR) was closely correlated to acclimation temperature, and at 16°C and 19°C sea hare had a relatively stable metabolic rate, with OCR increasing to 9 mg O2 1·kgˉ1 w.w. in a higher acclimation temperature.

Share and Cite:

Re, A. , Díaz, F. , Salas-Garza, A. , Gonzalez, M. , Cordero, V. , Galindo-Sanchez, C. , Sanchez-Castrejon, E. , Zamora, A. and Licea-Navarro, A. (2013) Thermal preference, tolerance and temperature-dependent respiration in the California sea hare Aplysia californica. Agricultural Sciences, 4, 46-52. doi: 10.4236/as.2013.46A007.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Kriegstein, A.R., Castellucci, V. and Kandel, E.R. (1974) Metamorphosis of Aplysia californica in laboratory culture. Proceedings of the National Academic of Science USA, 71, 3654-3658. doi:10.1073/pnas.71.9.3654
[2] Peretz, B. and Adkins, L. (1982) An index of age when birthdate is unknow in Aplysia californica: Shell size and growth in long-term maricultured animals. Biological Bulletin, 162, 333-344. doi:10.2307/1540987
[3] Capo, T.R., Fieber, L.A., Stommes, D.L. and Walsh, P.J. (2002) The effect of stocking density on growth rate and maturation time in laboratory-reared California sea hares. Journal of the American Association for Laboratory Animal Science, 41, 25-30.
[4] Fieber, L.A., Schmale, M.C., Jordi, N., Orbesen, E., Díaz, G. and Capo. T.R. (2005) Von Bertalanffy growth models for hatchery-reared Aplysia californica. Bulletin of Marine Science, 76, 95-104.
[5] Stommes, D., Lynne, B., Fieber, A., Beno, C., Gerdes, R. and Capo T.R. (2005) Temperature effects on growth, maturation, and lifespan of the California sea hare (Aplysia californica). Journal of the American Association for Laboratory Animal Science, 44, 31-35.
[6] Kupfermann, I. and Carew, T.J. (1974) Behaviour patterns of Aplysia californica in its natural habitat. Behavioral Biology, 12, 317-337. doi:10.1016/S0091-6773(74)91503-X
[7] Sánchez-Ortiz, C.A. (2000) Biodiversidad de moluscos opistobranquios (Mollusca: Opisthobranchiata), del Pacífico mexicano: Isla Cedros-Vizcaíno e islas del Golfo de California parte Sur. Universidad Autónoma de Baja California Sur. Informe Final SNIB-CONABIO Proyecto No.L136, México City.
[8] Cruz, M., Hill, D. and Cortez, P. (2007) Biología y distribución de la Familia Aplysiidae (Babosas de mar) en la zona intermareal del Ecuador desde el 2003 al 2005. Acta Oceanográfica del Pacifico, 14, 155-161.
[9] Capo, T.R., Fieber, L.A., Stommes, D.L. and Walsh, P.J. (2003) Reproductive output in the hatchery-reared California sea hare at different stocking densities. Journal of the American Association for Laboratory Animal Science, 42, 31-35.
[10] Kandel, P. and Capo, T.R. (1979) The packaging of ova in the egg cases of Aplysia californica. The Veliger, 22, 194198.
[11] Fieber, L.A. (2000) The development of excitatory capability in Aplysia californica bag cells observed in cohorts. Developmental Brain Research, 122, 47-58. doi:10.1016/S0165-3806(00)00053-5
[12] Kelsh, S.W. and Neill, W.H. (1990) Temperature preference versus acclimation in fishes: Selection for changing metabolic optima. Transactions of the American Fisheries Society, 119, 601-610. doi:10.1577/1548-8659(1990)119<0601:TPVAIF>2.3.CO;2
[13] Huey, R.B. (2003) Behavioral drive versus behavioral inertia in evolution: A null model approach. The American Naturalist, 161, 357-366. doi:10.1086/346135
[14] Huey, R.B. (1991) Physiological consequences of habitat of habitat selection. The American Naturalist, 137, S91S115. doi:10.1086/285141
[15] Tepler, S, Mach, K. and Denny, M. (2011) Preference versus performance: Body temperature of the intertidal snail Chlorostoma funebralis. Biological Bulletin, 220, 107-117.
[16] Reynolds, W.W., Casterlin, M.E. and Millington, S.T. (1978) Circadian rhythm of preferred temperatures in the bowfish Amia calva, a primitive holostean fish. Comparative Biochemistry and Physiology, 60A, 107-109. doi:10.1016/0300-9629(78)90044-0
[17] Fry, F.E. (1947) Effects of the environment on animal activity. Ontario Fisheries Research Laboratory Publication, Biol. Ser. 55, 68, 1-62.
[18] Reynolds, W.W. and Casterlin, M.E. (1979) Behavioral thermoregulation and the “final preferendum” paradigm. American Zoologist, 19, 211-224.
[19] Jobling, M. (1981) Temperature tolerance and the final preferendum-rapid methods for the assessment of optimum temperatures. Journal of Fish Biology, 19, 439-455. doi:10.1111/j.1095-8649.1981.tb05847.x
[20] Luttterschmidt, W.I. and Hutchison, V.M. (1997) The critical thermal maximum: Data to support the onset of spasms the definitive end point. Canadian Journal of Zoologist, 75, 1553-1560.
[21] Dallas, H.F. and River-Moore, N.A. (2012) Critical thermal maxima of aquatic macroinvertebrates: Toward identifying bioindicators of thermal alteration. Hydrobiologia, 679, 61-76. doi:10.1007/s10750-011-0856-4
[22] Cox, D.K. (1974) Effects of the three heating rates on the critical thermal maximum of bluegill. In: Gibbons, J.W. and Sharitz, R.R., Eds., Thermal Ecology, AEC Symposium Series (Conf-73055), Springfield, 150-163.
[23] Dallas, H.F. and Ketley, Z.A. (2011) Upper thermal limits of aquatic macroinvertebrates: Comparing critical thermal maxima with 96-LT50 values. Journal of Thermal Biology, 36, 322-327. doi:10.1016/j.jtherbio.2011.06.001
[24] Dong, Y., Yu, S., Wang, Q. and Dong, S. (2011) Physiological responses in a variable environment: Relationship between metabolism. Hsp and thermotolerance in an intertidal-subtidal species. Plos One, 6, e26446. doi:10.1371/journal.pone.0026446
[25] Lemos, D., Phan, V.N. and Alvarez, G. (2001) Growth, oxygen consumption, amomonia-N excretion, biochemical composition and energy content of Farfantepenaeus paulensis Perez-Farfante (Crustacea, Decapoda, Penaeidae) early postlarvae in different salinities. Journal of Experimental Marine Biology and Ecology, 261, 55-74. doi:10.1016/S0022-0981(01)00260-X
[26] Altinok, I. and Grizzle, J.M. (2003) Effects of low salinities on oxygen consumption of selected euryhaline and stenohaline freshwater fish. Journal of the World Aquaculture Society, 34, 113-117. doi:10.1111/j.1749-7345.2003.tb00046.x
[27] Brougher, D.S., Douglass, L.W. and Soares, J.H. (2005) Comparative oxygen consumption and metabolism of striped bass Morone saxatilis and its hybrid M. chrysops ♀ × M. saxatilis ♂. Journal of the World Aquaculture Society, 36, 521-529. doi:10.1111/j.1749-7345.2005.tb00400.x
[28] Salvato, B., Coumo, V., Di Muro, P. and Beltramini, M. (2001) Effect of environmental parameters on the oxygen consumption of marine invertebrates: A comparative factorial study. Marine Biology, 138, 659-668. doi:10.1007/s002270000501
[29] Das, T., Pal, A.K., Chakraborty, S.K., Manush, S.M., Chatterjee, N. and Mukherjee, S.C. (2005) Thermal tolerance and oxygen consumption of Indian major carps acclimated to four temperatures. Journal of Thermal Biology, 29, 157-163. doi:10.1016/j.jtherbio.2004.02.001
[30] Díaz, F., Re, A.D., Medina, Z., Re, G., Valdez, G. and Valenzuela, F. (2006) Thermal preference and tolerance of green abalone Haliotis fulgens (Philippi, 1845) and pink abalone Haliotis corrugata (Gray, 1828). Aquaculture Research, 37, 877-884. doi:10.1111/j.1365-2109.2006.01506.x
[31] Nelson, S.G., Simmons, M.A. and Knight, A.W. (1985) Calorigenic effect of diet on the grass shrimp Crangon franciscorum (Crustacea: Crangonidae). Comparative Biochemistry and Physiology, 82A, 373-376. doi:10.1016/0300-9629(85)90870-9
[32] Beamish, F.W.H. and Trippel, E.A. (1990) Heat increment: A static or dynamic dimension in bioenergetic models? Transactions of the American Fisheries Society, 119, 649-661. doi:10.1577/1548-8659(1990)119<0649:HIASOD>2.3.CO;2
[33] Zar, J.H. (1999) Biostatiscal analysis. Prentice Hall, Upper Saddle River, 645.
[34] Tukey, J.W. (1977) Exploratory data analysis. AdissonWesley, Reading, 688.
[35] Díaz, F., Del Rio-Portilla, M., Sierra, E., Aguilar, M. and Re-Araujo, A. (2000) Preferred temperature and critical thermal maxima of red abalone Haliotis rufescens. Journal of Thermal Biology, 25, 257-261. doi:10.1016/S0306-4565(99)00032-7
[36] Díaz, F., Salas A., Re, A.D., Gonzalez, M. and Reyes, I. (2011) Thermal preference and tolerance of Megastrea (Lithopoma) undosa (Wood, 1828; Gastropoda: Turbinidae). Journal of Thermal Biology, 36, 34-37. doi:10.1016/j.jtherbio.2010.10.004
[37] Stern, S., Borut, A. and Cohen, D. (1984) The effect of salinity and ion composition on oxygen consumption and nitrogen excretion of Macrobrachium rosenbergii. Comparative Biochemistry and Physiology, 79A, 271-274. doi:10.1016/0300-9629(84)90428-6
[38] Cerezo-Valverde, J. and García-García, B. (2004) Influence of body weight and temperature on post-prandial oxygen consumption of common octopus (Octopus vulgaris). Aquaculture, 233, 599-613. doi:10.1016/j.aquaculture.2003.11.025
[39] Zheng, Z., Jin, C., Li, M., Bai, P. and Dong, S. (2008) Effects of temperature and salinity on oxygen consumption and ammonia excretion of juvenile miiuy croaker, Miichthys miiuy (Basilewsky). Aquaculture International, 16, 581-589. doi:10.1007/s10499-008-9169-7
[40] Kavaliers, M. (1980) A circadian rhythm of behavioral thermoregulation in a freshwater gastropod, Helisoma trivolis. Canadian Journal of Zoology, 58, 2152-2155. doi:10.1139/z80-295
[41] Taylor, R.C. (1984) Thermal preference and temporal distribution in three crayfish species. Comparative Biochemistry and Physiology, 77A, 513-517. doi:10.1016/0300-9629(84)90220-2
[42] Bückle, R.L.F., Díaz-Herrera, F. Correa-Sandoval, F. BarónSevilla, B. and Hernandez-Rodríguez, M. (1994) Diel thermoregulation of the crawfish Procambarus clarkii (Crustacea, Cambaridae). Journal of Thermal Biology, 19, 419-422. doi:10.1016/0306-4565(94)90041-8
[43] Brett, J.R. (1971) Energetic responses of salmon to temperature. A study of some thermal relations in the physicology and freshwater ecology of sockeye salmon Orcorhynchus nerka. American Zoologist, 11, 99-113.
[44] Fraenkel, G.S. and Gunn, D.L. (1961) The orientation of animals, kineses, taxes and compass reactions. Dover Publications, New York, 376.
[45] Smith, A.M. (1991) The role of suction in the adhesion of limpets. Journal of Experimental Biology, 161, 151-169.
[46] Morley, S.A., Lemmon, V., Obermüller, B.E., Spicer, J.I., Clark, M.S. and Peck, L.S. (2011) Duration tenacity: A method for assessing acclimatory capacity of the Antarctic limpet Nacella concinna. Journal of the Experimental Marine Biology and Ecology, 399, 39-42. doi:10.1016/j.jembe.2011.01.013
[47] Davenport, J. (1997) Comparison of the biology of the intertidal sub Antartic limpets Nacella concinna and Kerguelenella lateralis. Journal of Molluscan Studies, 63, 39-48. doi:10.1093/mollus/63.1.39
[48] Flammang, P., Ribesse, R. and Jangoux, M. (2002) Biomechanics of adhesion in sea cucumber cuverian tubules (Echinodermata, Holothuroidea). Integrative Comparative Biology, 42, 1107-1115. doi:10.1093/icb/42.6.1107
[49] Santos, R. and Flammang, P. (2007) Intra-and interspecific variations of attachment strength in sea urchins. Marine Ecology Progress Series, 332, 129-142. doi:10.3354/meps332129
[50] Miller, N.A., Paganini, A.W. and Stillman, J.H. (2013) Differential thermal tolerance and energetic trajectories during ontogeny in porcelain crabs, genus Petrolisthes. Journal of Thermal Biology, 38, 79-85. doi:10.1016/j.jtherbio.2012.11.005

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.