UV-B as a Photoacclimatory Enhancer of the Hermatypic Coral Stylophora pistillata

Abstract

Photoacclimation processes are crucial for the survival of all photosynthetic organisms in the photic zone. Changes in photosynthetic active radiation (PAR) are however simultaneous to changes in UV-B radiation. The influence of UV-B levels on bio-optical and physiological parameters of deep (30 m) corals from the species Stylophora pistillata and their symbiotic algae, zooxanthellae, was examined during their gradual, stepwise acclimation to a shallow depth (3 m). Drastic exposure of deeper corals to higher UV-B levels in shallower depths is usually fatal. Hence, the acclimation process lasted 118 days and included 10 intermediate stations with an addition of similar amount of PAR at each depth transfer. Concomitantly, in an on-shore experiment, fragments from the same colonies were acclimated by changing shading nets corresponding in PAR levels to each in situ station. Since UV-B is attenuated more efficiently than PAR in seawater, the PAR: UV-B ratio changes in the depth experiment while remaining constant under the neutral density nets. This provided the opportunity to evaluate the importance of UV-B to photoacclimation. In both experiments all fragments survived, in spite of a four-fold difference in levels of PAR and a 140-fold difference in UV-B flux between the initial and final conditions. Both experimental designs resulted in reduction of zooxanthellae density, photosynthesis rates, and quantum yields of PSII, while cellular chlorophyll content remained unaffected. Zooxanthellae density and maximal photosynthetic rate was found decreased in correlation with UV-B radiation, whether it was elevated logarithmically with reducing depths or linearly with reducing shades. Conversely, quantum yields of PSII were adjusted according to the enhancement of PAR rather than UV-B. We conclude that UV-B enhances the magnitude of photoacclimation to higher PAR. This novel aspect of photoacclimation can provide the basis for our understanding of the underlying mechanisms that result in UV-related bleaching.

Share and Cite:

I. Cohen, G. Dishon, D. Iluz and Z. Dubinsky, "UV-B as a Photoacclimatory Enhancer of the Hermatypic Coral Stylophora pistillata," Open Journal of Marine Science, Vol. 3 No. 2A, 2013, pp. 15-27. doi: 10.4236/ojms.2013.32A003.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] P. G. Falkowski and Z. Dubinsky, “Light-Shade Adaptation of Stylophora pistillata, a Hermatypic Coral from the Gulf of Eilat,” Nature, Vol. 289, No. 5794, 1981, pp. 172-174. doi:10.1038/289172a0
[2] Z. Dubinsky, P. G. Falkowski, J. W. Porter and L. Muscatine, “Absorption and Utilization of Radiant Energy by Lightand Shade-Adapted Colonies of the Hermatypic Coral Stylophora pistillata,” Proceedings of the Royal Society of London, Vol. 222, No. 1227, 1984, pp. 203-214.
[3] T. Mass, S. Einbinder, E. Brokovich, N. Shashar, R. Vago, J. Erez and Z. Dubinsky, “Photoacclimation of Stylophora pistillata to Light Extremes: Metabolism and Calcification,” Marine Ecology Progress Series, Vol. 334, 2007, pp. 93-102. doi:10.3354/meps334093
[4] G. Winters, S. Beer, B. Ben Zvi, I. Brickner and Y. Loya, “Spatial and Temporal Photoacclimation of Stylophora pistillata: Zooxanthella Size, Pigmentation, Location and Clade,” Marine Ecology Progress Series, Vol. 384, 2009, pp. 107-119. doi:10.3354/meps08036
[5] E. Vareschi and H. Fricke, “Light Responses of a Scleractinian Coral (Plerogyra sinuosa),” Marine Biology, Vol. 90, No. 3, 1986, pp. 395-402. doi:10.1007/BF00428563
[6] J. T. O. Kirk, “Optics of UV-B Radiation in Natural Waters,” Archive of Hydrobiology, Vol. 43, No. 1, 1994, pp. 1-16.
[7] D. Iluz, R. Vago, N. E. Chadwick, R. Hoffman and Z. Dubinsky, “Seychelles Lagoon Provides Corals a Refuge from Bleaching,” Research Letters in Ecology, 2008, Article ID: 281038. doi:10.1155/2008/281038
[8] N. G. Jerlov, “Ultraviolet Radiation in the Sea,” Nature, Vol. 166, No. 4211, 1950, pp. 111-112. doi:10.1038/166111a0
[9] D. F. Gleason and G. M. Wellington, “Ultraviolet-Radiation and Coral Bleaching,” Nature, Vol. 365, No. 6449, 1993, pp. 836-838. doi:10.1038/365836a0
[10] A. Quesada, J.-L. Mouget and W. F. Vincent, “Growth of Antarctic Cyanobacteria under Ultraviolet Radiation: UVA Can Counteract UVB Inhibition,” Journal of Phycology, Vol. 31, No. 2, 1995, pp. 242-248. doi:10.1111/j.0022-3646.1995.00242.x
[11] P. L. Jokiel, “Solar Ultraviolet Radiation and Coral Reef Epifauna,” Science, Vol. 207, No. 4435, 1980, pp. 1069-1071. doi:10.1126/science.207.4435.1069
[12] J. A. Dykens and J. M. Shick, “Oxygen Production by Endosymbiotic Algae Controls Superoxide Dismutase Activity in Their Animal Host,” Nature, Vol. 297, No. 5867, 1982, pp. 579-580. doi:10.1038/297579a0
[13] J. A. Dykens, J. M. Shick, C. Benoit, G. R. Buettner and G. W. Winston, “Oxygen Radical Production in the SeaAnemone Anthopleura elegantissima and Its Endosymbiotic Algae,” Journal of Experimental Biology, Vol. 168, 1992, pp. 219-241.
[14] K. Asada and M. Takahashi, “Production and Scavenging of Active Oxygen in Photosynthesis,” In: D. J. Kyle, C. B. Osmond and C. J. Arntzen, Eds., Photoinhibition Topics in Photosynthesis, Vol. 9, Elsevier, Amsterdam, 1987, pp. 227-287.
[15] M. Kühl, Y. Cohen, T. Dalsgaard, B. B. Jorgensen and N. P. Revsbech, “Microenvironment and Photosynthesis of Zooxanthellae in Scleractinian Corals Studied with Microsensors For O2, pH, and Light,” Marine Ecology Progress Series, Vol. 117, No. 1-3, 1995, pp. 159-172. doi:10.3354/meps117159
[16] J. M. Shick, M. P. Lesser, W. C. Dunlap, W. R. Stochaj, B. E. Chalker and J. W. Won, “Depth Dependent Responses to Solar Ultraviolet Radiation and Oxidative Stress in The Zooxanthellae Coral Acropora microphthalma,” Marine Biology, Vol. 122, No. 1, 1995, pp. 41-51. doi:10.1007/BF00349276
[17] W. C. Dunlap, B. E. Chalker and J. K. Oliver, “Bathymetric Adaptation of Reef Building Corals at Davies Reef, Great Barrier Reef, Australia. III. UV-Absorbing Compounds,” Journal of Experimental Marine Biology and Ecology, Vol. 104, No. 1-3, 1986, pp. 239-248. doi:10.1016/0022-0981(86)90108-5
[18] G. M. Scelfo, “Relationship between Solar Radiation and Pigments of the Coral Montipora verrucosa and Its zooxanthellae,” In: P. L. Jokiel, R. H. Richmond and R. A. Rogers, Eds., Coral Reef Population Biology, Tech. Report 37, Hawaii Institute of Marine Biology, Honolulu, 1986.
[19] R. A. Kinzie, “Effects of Ambient Levels of Solar Ultraviolet-Radiation on Zooxanthellae and Photosynthesis of the Reef Coral Montipora verrucosa,” Marine Biology, Vol. 116, No. 2, 1993, pp. 319-327. doi:10.1007/BF00350022
[20] J. P. Gattuso, “Ecomorphology, Metabolism, Growth and Calcification of the Zooxanthellate Scleractinian Coral Stylophora pistillata (Gulf of Aqaba, Red Sea)—Effects of Lighting,” PhD Thesis, University of Marseille, Marseille, 1987.
[21] H. T. Yap, R. M. Alvarez, H. M. Custodio and R. M. Dizon, “Physiological and Ecological Aspects of Coral Transplantation,” Journal of Experimental Marine Biology and Ecology, Vol. 229, No. 1, 1998, pp. 69-84. doi:10.1016/S0022-0981(98)00041-0
[22] A. C. Baker, “Reef Corals Bleach to Survive Change,” Nature, Vol. 411, No. 6839, 2001, pp. 765-766. doi:10.1038/35081151
[23] S. Richier, J. M. Cottalorda, M. M. M. Guillaume, C. Fernandez, D. Allemand and P. Furla, “Depth-Dependant Response to Light of the Reef Building Coral, Pocillopora verrucosa: Implication of Oxidative Stress,” Journal of Experimental Marine Biology and Ecology, Vol. 357, No. 1, 2008, pp. 48-56. doi:10.1016/j.jembe.2007.12.026
[24] C. J. Lorenzen, “Determination of Chlorophyll and PheoPigments—Spectrophotometric Equations,” Limnology and Oceanography, Vol. 12, No. 2, 1967, pp. 343-346. doi:10.4319/lo.1967.12.2.0343
[25] S. Lampert-Karako, N. Stambler, D. J. Katcoff, Y. Achituv, Z. Dubinsky and N. Simon-Blecher, “Effects of Depth and Eutrophication on the Zooxanthella Clades of Stylophora pistillata from the Gulf of Eilat (Red Sea),” Aquatic Conservation: Marine and Freshwater Ecosystems, Vol. 18, No. 6, 2008, pp. 1039-1045 doi:10.1002/aqc.927
[26] K. A. Byler, M. Carmi-Veal, M. Fine and T. L. Goulet, “Multiple Symbiont Acquisition Strategies as an Adaptive Mechanism in the Coral Stylophora pistillata,” PLoS ONE, Vol. 8, No. 3, 2013, Article ID: e59596. doi:10.1371/journal.pone.0059596
[27] G. Dohler, E. Hagmeier, E. Grigoleit and K. D. Krause, “Impact of Solar UV Radiation on Uptake of N-15-Ammonia and N-15-Nitrate by Marine Diatoms and Natural Phytoplankton,” Biochemical Physiology, Vol. 187, 1991, pp. 293-303.
[28] M. P. Lesser, “Responses of Phytoplankton Acclimated to UV-B Radiation: Ultraviolet Radiation Absorbing Compounds Do Not Provide Complete Protection in the Dinoflagellate Prorocentrum micans,” Marine Ecology Progress Series, Vol. 132, 1996, pp. 287-297. doi:10.3354/meps132287
[29] D. J. Franklin, P. Hoegh-Guldberg, R. J. Jones and J. A Berges, “Cell Death and Degeneration in the Symbiotic Dinoflagellates of the Coral Stylophora pistillata during Bleaching,” Marine Ecology Progress Series, Vol. 272, 2004, pp. 117-130. doi:10.3354/meps272117
[30] M. D. A. Le Tissier and B. E. Brown, “Dynamics of Solar Bleaching in the Intertidal Reef Coral Goniastrea aspera at Ko Phuket, Thailand,” Marine Ecology Progress Series, Vol. 136, 1996, pp. 235-244. doi:10.3354/meps136235
[31] S. R. Dunn, J. C. Bythell, M. D. A. Le Tissier, W. J. Burnett and J. C. Thomason, “Programmed Cell Death and Cell Necrosis Activity During Hyperthermic StressInduced Bleaching of the Symbiotic Sea Anemone Aiptasia sp.,” Journal of Experimental Marine Biology and Ecology, Vol. 272, No. 1, 2002, pp. 29-53. doi:10.1016/S0022-0981(02)00036-9
[32] K. J. A. Davies, “Protein Damage and Degradation by Oxygen Radicals. 1. General Aspects,” Journal of Biological Chemistry, Vol. 262, No. 20, 1987, pp. 9895-9901.
[33] E. A. Titlyanov, J. Tsukahara, T. V. Titlyanova, V. A. Leletkin, R. Van Woesik and K. Yamazato, “Zooxanthellae Population Density and Physiological State of the Coral Stylophora pistillata Curing Starvation and Osmotic Shock,” Symbiosis, Vol. 28, 2000, pp. 303-322.
[34] R. D. Gates, G. Baghdasarian and L. Muscatine, “Temperature Stress Causes Host Cell Detachment in Symbiotic Cnidarians—Implications for Coral Bleaching,” Biological Bulletin, Vol. 182, No. 3, 1992, pp. 324-332. doi:10.2307/1542252
[35] I. Gómez and F. L. Figueroa, “Effects of Solar UV Stress on Chlorophyll Fluorescence Kinetics of Intertidal Macroalgae from Southern Spain: A Case Study in Gelidium Species,” Journal of Applied Phycology, Vol. 10, No. 3, 1998, pp. 285-294. doi:10.1023/A:1008021230738
[36] K. Q. Lao and A. N. Glazer, “Ultraviolet-B Photodestruction of a Light-Harvesting Complex,” Proceedings of the National Academy of Science, Vol. 93, No. 11, 1996, pp. 5258-5263. doi:10.1073/pnas.93.11.5258
[37] A. U. Bracher and C. Wiencke, “Simulation of the Effects of Naturally Enhanced UV Radiation on Photosynthesis of Antarctic Phytoplankton,” Marine Ecology Progress Series, Vol. 196, 2000, pp. 127-141. doi:10.3354/meps196127
[38] L. W. Jones and B. Kok, “Photoinhibition of Chloroplast Reactions II: Multiple Effects,” Plant Physiology, Vol. 41, No. 6, 1966, pp. 1044-1049. doi:10.1104/pp.41.6.1044
[39] B. M. Greenberg, V. Gaba, O. Canaani, S. Malkin, A. K. Mattoo and M. Edelman, “Separate Photosensitizers Mediate Degradation of the 32-kDa Photosystem II Reaction Center Protein in the Visible and UV Spectral Regions,” Proceedings of the National Academy of Science, Vol. 86, No. 17, 1989, pp. 6617-6620. doi:10.1073/pnas.86.17.6617
[40] M. O. Hoogenboom, K. R. N. Anthony and S. R. Connolly, “Energetic Cost of Photoinhibition in Corals,” Marine Ecology Progress Series, Vol. 313, 2006, pp. 1-12. doi:10.3354/meps313001
[41] M. Y. Gorbunov, Z. S. Kolber, M. P. Lesser and P. G. Falkowski, “Photosynthesis and Photoprotection in Symbiotic Corals,” Limnology and Oceanography, Vol. 46, No. 1, 2001, pp. 75-85. doi:10.4319/lo.2001.46.1.0075
[42] M. Tevini, U. Mark, G. Fieser and M. Salle, “Effects of Enhanced Solar UV-B Radiation on Growth and Function of Selected Crop Plant Seedlings,” In: E. Riklis, Ed., Photobiology, Plenum, New York, 1991, pp. 635-649.
[43] K. E. Ulstrup, P. J. Ralph, A. W. D. Larkum and M. Kuhl, “Intra-Colonial Variability in Light Acclimation of Zooxanthellae in Coral Tissues of Pocillopora damicornis,” Marine Biology, Vol. 149, No. 6, 2006, pp. 1325-1335. doi:10.1007/s00227-006-0286-4
[44] F. L. Figueroa, R. Conde-Alvarez and I. Gomen, “Relations between Electron Transport Rates Determined by Pulse Amplitude Modulated Chlorophyll Fluorescence and Oxygen Evolution in Macroalgae under Different Light Conditions,” Photosynthesis Research, Vol. 75, No. 3, 2003, 259-275. doi:10.1023/A:1023936313544
[45] J. M. Shick, S. Romaine-Lioud, C. Ferrier-Pages and J. P. Gattuso, “Ultraviolet-B Radiation Stimulates Shikimate Pathway-Dependent Accumulation of Mycosporine-Like Amino Acids in the Coral Stylophora pistillata Despite Decreases in Its Population of Symbiotic Dinoflagellates,” Limnology and Oceanography, Vol. 44, No. 7, 1999, pp. 1667-1682. doi:10.4319/lo.1999.44.7.1667
[46] O. Siebeck, “Experimental Investigation of UV Tolerance in Hermatypic Corals (Scleractinia),” Marine Ecology Progress Series, Vol. 43, 1988, pp. 95-103. doi:10.3354/meps043095
[47] O. Levy, Y. Achituv, Y. Z. Yacobi, N. Stambler and Z. Dubinsky, “The Impact of Spectral Composition and Light Periodicity on the Activity of Two Antioxidant Enzymes (SOD and CAT) in the Coral Favia favus,” Journal of Experimental Marine Biology and Ecology, Vol. 328, No. 1, 2006, pp. 35-46. doi:10.1016/j.jembe.2005.06.018
[48] D. F. Gleason, “Differential Effects of Ultraviolet Rdiation on Green and Brown Morphs of the Caribbean Coral Porites astreoides,” Limnology and Oceanography, Vol. 38, No. 7, 1993, pp. 1452-1463. doi:10.4319/lo.1993.38.7.1452

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.