Numerical Investigation of an Impinging Diffusion Flames-Effects of Fuel Variability


In our study, we investigate the differences between the combustion of different hydrocarbon fuels CH4, C3H8, C4H10. A numerical simulation of an impinging jet diffusion flames is used. The jet injector has a 10 mm in diameter and the distance between the jet flame and the vertical wall is 2 time half diameter. The fuel jet velocity was fixed for 11.8 m/s, corresponding to a Reynolds number of 6881. The flame characteristics varied from hydrocarbon to another for the same Reynolds number. The combustion products of CO, CO2, NO, OH, are depending on the methane and propane and butane flames for the same conditions. The temperature of the flame was varied from hydrocarbon to another the same as for the chemical species production rate. The concentration of the thermal and prompt NO pollutant depends on the temperature flow field and on the thermochemical characteristics of the hydrocarbon fuels.

Share and Cite:

N. Ghiti, A. Bentebbiche and S. Hanchi, "Numerical Investigation of an Impinging Diffusion Flames-Effects of Fuel Variability," Open Journal of Fluid Dynamics, Vol. 3 No. 2, 2013, pp. 127-134. doi: 10.4236/ojfd.2013.32016.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] S. P. Burke and T. E. W. Schumann, “Diffusion Flames,” Proceedings of the Symposium Combustion, Vol. 1-2, No. 1, 1948, pp. 2-11.
[2] R. S. Barlow, and C. D. Carter, “Raman/Rayleigh/LIF Measurements of Nitric Oxide Formation in Turbulent Hydrogen Jet Flames,” 1993.
[3] L. L. Dong, C. S. Cheung and C. W. Leung, “Characterization of Impingement Region from an Impinging Inverse Diffusion Flame Jet,” International Journal Heat and Mass Transfer, Vol. 56, No. 1-2, 2013, pp. 360-369. doi:10.1016/j.ijheatmasstransfer.2012.08.064
[4] B. G. Sarnacki, G. Esposito, R. H. Krauss and H. K. Chelliah, “Extinction Limits and Associated Uncertainties of Nonpremixed Counter Flow Flames of Methane Ethylene, Propylene and n-Butane in Air,” Combustion and Flame, Vol. 159, No. 3, 2012, pp. 1026-1043. doi:10.1016/j.combustflame.2011.09.007
[5] H. S. Zhen, C. S. Cheung, C. W. Leung and H. B. Li, “Thermal and Heat Transfer Behaviors of an Inverse Diffusion Flame with Induced Swirl,” 2012.
[6] D. Mira Martinez, X. Jiang, C. Moulinec and D. R. Emerson, “Numerical Investigation of the Effects of Fuel Variability on the Dynamics of Syngas Impinging Jet Flames,” 2012.
[7] C. McDaid, J. Zhou and Y. Zhang, “Experimental of Complex Flame Propagations Initiated at Different Locations of an Impingement Configuration,” 2012.
[8] S. Chander and A. Ray, “Experimental and Numerical Study on the Occurrence of Off-Stagnation Peak in Heat Flux for Laminar Methane/Air Flame Impinging on a Flat Surface,” International Journal of Heat and Mass Transfer, Vol. 54, No. 5-6, 2011, pp. 1179-1186. doi:10.1016/j.ijheatmasstransfer.2010.10.035
[9] J. E. Jaramillo, F. X. Trias, A. Gorobets, C. D. Pérez-Segarra and A. Olia, “DNS and RANS Modelling of a Turbulent Plane Impinging Jet,” International Journal of Heat and Mass Transfer, Vol. 55, No. 4, 2012, pp. 789-801. doi:10.1016/j.ijheatmasstransfer.2011.10.031
[10] N. Uddin, S. O. Neumann and B. Weigand, “LES Simulation of Impinging Jet: On the Origin of the Second Peak in the Nusselt Number Distribution,” International Journal of Heat and Mass Transfer, Vol. 57, No. 1, 2013, pp. 356-368.
[11] H. S. Zhen, C. W. Leung and C. S. Cheung, “Emission of Impinging Swirling and Non-Swirling Inverse Diffusion Flames,” Applied Energy, Vol. 88, No. 5, 2011, pp. 1629-1634. doi:10.1016/j.apenergy.2010.11.036
[12] M. Kuang, Q. Y. Zhu, Z. Q. Li and X. Zhang, “Numerical Investigation on Combustion and NOx Emission of down Fired 350 MWe Utility Boiler with Multiple Injection and Multiple Staging: Effect of the Air Stoichiometric Ratio in the Primary Combustion Zone,” Fuel Processing Technology, Vol. 109, 2013, pp. 32-42.
[13] H. S. Zhen, Y. S. Choy, C. W. Leung and C. S. Cheung, “Effects of Nozzle on Flame and Emission Behaviors of Multi Fuel Jet Inverse Diffusion Flame Burner,” Applied Energy, Vol. 88, No. 9, 2011, pp. 2917-2924. doi:10.1016/j.apenergy.2011.02.040
[14] H. S. Zhen, C. S. Cheung, C. W. Leung and Y. S. Choy, “A Comparison of the Emission and Impingement Heat Transfer of LPG-H2 and CH4-H2 Premixed Flames,” International Journal of Hydrogen Energy, Vol. 37, No. 14, 2012, pp. 10947-10955. doi:10.1016/j.ijhydene.2012.04.055
[15] G. Singh, S. Chander and A. Ray, “Heat Transfer Characteristics of Naturel Gas/Air Swirling Flame Impinging on a Flat Surface,” Experimental Thermal and Fluid Science, Vol. 41, 2012, pp. 165-176. doi:10.1016/j.expthermflusci.2012.04.013
[16] N. Ghiti, A. A. Bentebbiche and R. Boulkourne, “Nitrogen Dilution and Extinction Effects for Methane Impinging Diffusion Flame,” IERI Procedia 1, No. 1, 2012, pp. 39-46. doi:10.1016/j.ieri.2012.06.008
[17] N. Ghiti, A. A. Bentebbiche, S. Hanchi and R. Boulkroune, “A Study of the Interaction between a Jet Flame and a Lateral Wall,” Canadian Journal on Mechanical Sciences & Engineering, Vol. 3, No. 2, 2012, pp. 30-35.
[18] N. Ghiti, A. A. Bentebbiche and R. Boulkroune, “Experimental Investigation of the Interaction between Turbulent Impinging Flame and Radiation,” International Journal of Fluid Mechanics Research, Vol. 40, No. 1, 2013, pp. 1-8.
[19] N. Ghiti, A. A. Bentebbiche and R. Boulkroune, “Dilution Effect on the Extinction of Impinging Diffusion Flame with a Lateral Wall,” American Journal of Mechanical Engineering, Vol. 1, No. 2, 2013, pp. 30-33. doi:10.12691/ajme-1-2-2
[20] Guide Fluent, Vol. 4, 1997.
[21] V. Yakhot, et al., “Development of Turbulence Models for Shear Flow by Double Expansion Technique,” Physics of Fluids A, Vol. 4, No. 7, 1992, pp. 1510-1521. doi:10.1063/1.858424

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.