Effects of Gabaergic Phenols on Phospholipid Bilayers as Evaluated by 1H-NMR


The phenols propofol and thymol, and lately carvacrol, eugenol and chlorothymol, have been shown to act as positive allosteric modulators on GABAA receptor, which is the main inhibitory receptor of the central nervous system. GABAA receptor is an intrinsic membrane protein which activity may be affected by surface-active compounds and by physical changes in the membrane. Recently, we demonstrated that these phenols interacted with the lipid membrane phase, suggesting their anesthetic activity could be the combined result of their specific (with receptor proteins) as well as nonspecific (with surrounding lipid molecules) interaction modulating the supramolecular organization of the receptor environment. In the current study, by using 1H-NMR spectroscopy, we have investigated the effects of the insertion and the possible preferential location of the five phenol derivatives with GABAergic activity on EPC membranes. The results indicate that all compounds are able to insert in EPC phospholipid vesicles and to locate in the region between the polar group (choline molecule), the glycerol and the first atoms of the acyl chains, being the more lipophilic compounds (propofol and chlorothymol) that seem to prefer a deeper bilayer insertion. The location of the phenol molecules would reduce the repulsive forces among phospholipids head groups allowing closer molecular packing and finally diminishing the mobility of the hydrocarbon chains, as revealed by 1H spin relaxation times.

Share and Cite:

G. Reiner, L. Fraceto, E. Paula, M. Perillo and D. García, "Effects of Gabaergic Phenols on Phospholipid Bilayers as Evaluated by 1H-NMR," Journal of Biomaterials and Nanobiotechnology, Vol. 4 No. 3A, 2013, pp. 28-34. doi: 10.4236/jbnb.2013.43A004.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] [1] V. Campagna-Slater and D. F. Weaver, “Anaesthetic Binding Sites for Etomidate and Propofol on a GABAA Receptor Model,” Neuroscience Letters, Vol. 418, No. 1, 2007, pp. 28-33. doi:10.1016/j.neulet.2007.02.091
[2] R. L. Macdonald and R. W. Olsen, “GABAA Receptor Channels,” Annual Review of Neuroscience, Vol. 17, No. 1994, pp. 569-602.
[3] U. Rudolph and H. Mohler, “Analysis of GABAA Receptor Function and Dissection of the Pharmacology of Benzodiazepines and General Anesthetics through Mouse Genetics,” Annual Review of Pharmacology and Toxicology, Vol. 44, No. 2004, pp. 475-498.
[4] R. Sogaard, T. M. Werge, C. Bertelsen, C. Lundbye, K. L. Madsen, C. H. Nielsen and J. A. Lundbaek, “GABA(A) Receptor Function Is Regulated by Lipid Bilayer Elasticity,” Biochemistry, Vol. 45, No. 43, 2006, pp. 13118131129. doi:10.1021/bi060734+
[5] F. Sancar and C. Czajkowski, “Allosteric Modulators Induce Distinct Movements at the GABA-Binding Site Interface of the GABA-A Receptor,” Neuropharmacology, Vol. 60, No. 2-3, 2011, pp. 520-528. doi:10.1016/j.neuropharm.2010.11.009
[6] B. Mohammadi, G. Haeseler, M. Leuwer, R. Dengler, K. Krampfl and J. Bufler, “Structural Requirements of Phenol Derivatives for Direct Activation of Chloride Currents via GABA(A) Receptors,” European Journal of Pharmacology, Vol. 421, No. 2, 2001, pp. 85-91. doi:10.1016/S0014-2999(01)01033-0
[7] D. A. Garcia, J. Bujons, C. Vale and C. Sunol, “Allosteric Positive Interaction of Thymol with the GABAA Receptor in Primary Cultures of Mouse Cortical Neurons,” Neuropharmacology, Vol. 50, No. 1, 2006, pp. 25-35. doi:10.1016/j.neuropharm.2005.07.009
[8] G. N. Reiner, L. Delgado-Marin, N. Olguin, S. SanchezRedondo, M. Sanchez-Borzone, E. Rodriguez-Farre, C. Sunol and D. A. Garcia, “Gabaergic Pharmacological Activity of Propofol Related Compounds as Possible Enhancers of General Anesthetics and Interaction with Membranes,” Cell Biochemistry and Biophysics, 2013, pp. 1-11.
[9] M. R. Witt and M. Nielsen, “Characterization of the Influence of Unsaturated Free Fatty Acids on Brain GABA/ Benzodiazepine Receptor Binding in Vitro,” Journal of Neurochemistry, Vol. 62, No. 4, 1994, pp. 1432-1439. doi:10.1046/j.1471-4159.1994.62041432.x
[10] D. A. Garcia, M. A. Perillo, J. A. Zygadlo and I. D. Martijena, “The Essential Oil from Tagetes Minuta L. Modulates the Binding of [3H]flunitrazepam to Crude Membranes from Chick Brain,” Lipids, Vol. 30, No. 12, 1995, pp. 1105-1110. doi:10.1007/BF02536610
[11] M. A. Perillo, D. A. Garcia, R. H. Marin and J. A. Zygadlo, “Tagetone Modulates the Coupling of Flunitrazepam and GABA Binding Sites at GABAA Receptor from Chick Brain Membranes,” Molecular Membrane Biology, Vol. 16, No. 2, 1999, pp. 189-194. doi:10.1080/096876899294652
[12] M. Pytel, K. Mercik and J. W. Mozrzymas, “Interaction between Cyclodextrin and Neuronal Membrane Results in Modulation of GABA(A) Receptor Conformational Transitions,” British Journal of Pharmacology, Vol. 148, No. 4, 2006, pp. 413-422. doi:10.1038/sj.bjp.0706747
[13] G. N. Reiner, D. O. Labuckas and D. A. Garcia, “Lipophilicity of Some GABAergic Phenols and Related Compounds Determined by HPLC and Partition Coefficients in Different Systems,” Journal of Pharmaceutical and Biomedical Analysis, Vol. 49, No. 3, 2009, pp. 686-691. doi:10.1016/j.jpba.2008.12.040
[14] G. N. Reiner, M. A. Perillo and D. A. Garcia, “Effects of Propofol and Other GABAergic Phenols on Membrane Molecular Organization,” Colloids and Surfaces B: Biointerfaces, Vol. 101, No. 2013, pp. 61-67.
[15] L. F. Fraceto, A. Spisnic, S. Scherier and E. de Paula, “Differential Effects of Uncharged Aminoamide Local Anesthetics on Phospholipid Bilayers, as Monitored by 1H-NMR Measurements,” Biophysical Chemistry, Vol. 115, No. 2005, pp. 11-18.
[16] L. F. Fraceto, M. Pinto Lde, L. Franzoni, A. A. Braga, A. Spisni, S. Schreier and E. de Paula, “Spectroscopic Evidence for a Preferential Location of Lidocaine inside Phospholipid Bilayers,” Biophysical Chemistry, Vol. 99, No. 3, 2002, pp. 229-243. doi:10.1016/S0301-4622(02)00202-8
[17] Y. Kuroda and Y. Fujiwara, “Locations and Dynamical Perturbations for Lipids of Cationic Forms of Procaine, Tetracaine, and Dibucaine in Small Unilamellar Phosphatidylcholine Vesicles as Studied by Nuclear Overhauser Effects in 1H Nuclear Magnetic Resonance Spectroscopy,” Biochim Biophys Acta, Vol. 903, No. 3, 1987, pp. 395-410. doi:10.1016/0005-2736(87)90046-0
[18] S. Fujisawa, Y. Kadoma and Y. Komoda, “1H and 13C NMR Studies of the Interaction of Eugenol, Phenol, and Triethyleneglycol Dimethacrylate with Phospholipid Liposomes as a Model System for Odontoblast Membranes,” Journal of Dental Research, Vol. 67, No. 11, 1988, pp. 1438-1441. doi:10.1177/00220345880670111501
[19] E. Locci, S. Lai, A. Piras, B. Marongiu and A. Lai, “13CCPMAS and 1H-NMR Study of the Inclusion Complexes of Beta-Cyclodextrin with Carvacrol, Thymol, and Eugenol Prepared in Supercritical Carbon Dioxide,” Chemistry & Biodiversity, Vol. 1, No. 9, 2004, pp. 1354-1366. doi:10.1002/cbdv.200490098
[20] W. M. Yau, W. C. Wimley, K. Gawrisch and S. H. White, “The Preference of Tryptophan for Membrane Interfaces,” Biochemistry, Vol. 37, No. 42, 1998, pp. 14713-14718. doi:10.1021/bi980809c
[21] J. Seelig, “31P Nuclear Magnetic Resonance and the Head Group Structure of Phospholipids in Membranes,” Biochimica et Biophysica Acta, Vol. 515, No. 2, 1978, pp. 105-140. doi:10.1016/0304-4157(78)90001-1
[22] G. Buldt and R. Wohlgemuth, “The Headgroup Conformation of Phospholipids in Membranes,” The Journal of Membrane Biology, Vol. 58, No. 2, 1981, pp. 81-100. doi:10.1007/BF01870972
[23] J. F. Ellena, S. J. Archer, R. N. Dominey, B. D. Hill and D. S. Cafiso, “Localizing the Nitroxide Group of Fatty Acid and Voltage-Sensitive Spin-Labels in Phospholipid Bilayers,” Biochimica et Biophysica Acta, Vol. 940, No. 1, 1988, pp. 63-70. doi:10.1016/0005-2736(88)90008-9
[24] B. J. Gaffney and H. M. McConnell, “ParamagneticResonance Spectra of Spin Labels in Phospholipids Membranes,” Journal of Magnetic Resonance, Vol. 16, 1974, pp. 1-30.
[25] L. F. Fraceto, M. Pinto Lde, L. Franzoni, A. A. Braga, A. Spisni, S. Schreier and E. de Paula, “Spectroscopic Evidence for a Preferential Location of Lidocaine Inside Phospholipid Bilayers,” Biophysical Chemistry, Vol. 99, No. 3, 2002, pp. 229-243. doi:10.1016/S0301-4622(02)00202-8

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.