Cytoplasm Has No Effect on the Yield and Quality of Biomass Sorghum Hybrids


The development of the biomass sorghum hybrid seed industry is contingent on the use of cytoplasmic male sterility. Within sorghum, there are several different cytoplasmic male sterility systems and it is important to determine early in development if cytoplasm will affect agronomic performance or composition characters. Thus, if there is a difference, then the best system can be deployed. The purpose of this study was to determine if cytoplasm per se influences agronomic performance of biomass sorghum using a set of iso-cytoplasmic hybrids. Three hybrid genotypes were produced in three different cytoplasms (A1, A2, and A3) for a total of nine hybrids. These hybrids were evaluated for plant height, biomass yield, and biomass composition in three Texas environments (Weslaco, College Station, and Halfway) in 2010. Across environments, significant differences existed among hybrids for both agronomic and compositional traits, but cytoplasm per se had no effect on any measured trait. Since cytoplasm did not effect on hybrid performance, any of the tested cytoplasms (A1, A2, and A3) can be deployed in hybrid biomass sorghums.

Share and Cite:

Hoffmann Jr., L. and Rooney, W. (2013) Cytoplasm Has No Effect on the Yield and Quality of Biomass Sorghum Hybrids. Journal of Sustainable Bioenergy Systems, 3, 129-134. doi: 10.4236/jsbs.2013.32018.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] W. L. Rooney, J. Blumenthal, B. Bean and J. E. Mullet, “Designing Sorghum as a Dedicated Bioenergy Feedstock,” Biofuels Bioproducts and Biorefining, Vol. 1, No. 2, 2007, pp. 147-157. doi:10.1002/bbb.15
[2] J. C. Stephens and R. F. Holland, “Cytoplasmic Male Sterility for Hybrid Sorghum Seed Production,” Agronomy Journal, Vol. 46, No. 1, 1954, pp. 20-23. doi:10.2134/agronj1954.00021962004600010006x
[3] L. A. Tatum, “The Southern Corn Leaf Blight Epidemic,” Science, Vol. 173, No. 3991, 1971, p. 39. doi:10.1126/science.173.3991.39
[4] N. G. P. Rao, “Occurence of Cytoplasmic Genetic Male Sterility in Some Indian Sorghums,” Indian Journal of Genetic and Plant Breed, Vol. 22, 1962, pp. 257-259.
[5] S. H. Hussaini and P. V. Rao, “A Note on the Spontaneous Ocurrence of Cytoplasmic Male Sterility in Indian Sorghum,” Sorghum News, 1964, pp. 27-28.
[6] O. J. Webster and S. P. Singh, “Breeding Behavior and Histological Structure of a Nondehiscent Anther Character in Sorghum vulgare Pers. 1,” Crop Science, Vol. 4, No. 6, 1964, pp. 656-658. doi:10.2135/cropsci1964.0011183X000400060032x
[7] W. M. Ross and H. L. Hackerott, “Registration of Seven Isocytoplasmic Sorghum Germplasm Lines 1 (Reg. Nos. GP 9 to GP 15),” Crop Science, Vol. 12, No. 5, 1972, pp. 720-721. doi:10.2135/cropsci1972.0011183X001200050083x
[8] K. F. Schertz, “Registration of A2 Tx2753 and B Tx2753 Sorghum Germplasms (Reg. No. GP 30 and 31),” Crop Science, Vol. 17, No. 6, 1977, p. 983. doi:10.2135/cropsci1977.0011183X001700060056x
[9] K. F. Schertz and J. M. Ritchey, “Cytoplasmic-Genic Male-Sterility Systems in Sorghum,” Crop Sciene, Vol. 18, No. 5, 1978, pp. 890-893. doi:10.2135/cropsci1978.0011183X001800050055x
[10] J. V. Worstell, H. J. Kidd and K. F. Schertz, “Relationships among Male-Sterility Inducing Cytoplasms of Sorghum,” Crop Science, Vol. 24, No. 1, 1984, pp. 186-189. doi:10.2135/cropsci1984.0011183X002400010044x
[11] G. W. Xu, Y. X. Cui, K. F. Schertz and G, E, Hart, “Isolation of Mitochondrial DNA Sequences That Distinguish Male-Sterility-Inducing Cytoplasms in Sorghum bicolor (L.) Moench,” Theoretical and Applied Genetics, Vol. 90, No. 7, 1995, pp. 1180-1187.
[12] F. R. Miller, “Registration of Seven Sorghum Aand BLine Inbreds,” Crop Science, Vol. 26, No. 1, 1986, pp. 216-217. doi:10.2135/cropsci1986.0011183X002600010084x
[13] F. R. Miller, T. F. Dusek and K. L. Prihoda, “Registration of A2/B2Tx636 and A2/B2Tx637,” Crop Science, Vol. 32, No. 2, 1992, pp. 511-512. doi:10.2135/cropsci1992.0011183X003200020068x
[14] F. R. Miller, “Registration of RTx432 Sorghum,” Crop Science, Vol. 24, No. 2, 1984, p. 392. doi:10.2135/cropsci1984.0011183X002400020066x
[15] K. F. Schertz, “Registration of A3Tx398,” Crop Science, Vol. 24, No. 4, 1984, p. 833. doi:10.2135/cropsci1984.0011183X002400040067x
[16] J. F. Pedersen and J. J. Toy, “Registration of 29 Forage Sorghum Genetic Stocks in A3 Cytoplasm,” Crop Science, Vol. 37, No. 4, 1997, pp. 1408-1409. doi:10.2135/cropsci1997.0011183X003700040096x
[17] J. F. Pedersen, J. J. Toy and B. E. Johnson, “Registration of 43 Sorghum Genetic Stocks in A2, A3, and A4 Cytoplasm,” Crop Science, Vol. 37 No. 4, 1997, pp. 1412-1414. doi:10.2135/cropsci1997.0011183X003700040102x
[18] F. R. Miller, J. A. Dahlberg and P. W. Morgan, “Registration of A3/B3 Cytoplasmic-Genetic Male-Sterile Sorghum Maturity and Height Parental Lines,” Crop Science, Vol. 39, No. 1, 1999, pp. 306-307. doi:10.2135/cropsci1999.0011183X003900010081x
[19] H. V. Tang and D. R. Pring, “Conversion of Fertility Restoration of the Sorghum IS1112C (A3) Male-Sterile Cytoplasm from Two Genes to One Gene Joint contribution of the USDA-ARS and the University of Florida Agric. Exp. Stn. Published as Journal Series No. R-09082,” Crop Science, Vol. 43, No. 5, 2003, pp. 1747-1753. doi:10.2135/cropsci2003.1747
[20] H. V. Tang, J. F. Pedersen, C. D. Chase and D. R. Pring, “Fertility Restoration of the Sorghum A3 Male-Sterile Cytoplasm through a Sporophytic Mechanism Derived from Sudangrass All Rights Reserved,” Crop Science, Vol. 47, No. 3, 2007, pp. 943-950. doi:10.2135/cropsci2006.08.0542
[21] T. W. Pfeiffer, M. J. Bitzer, J. J. Toy and J. F. Pedersen, “Heterosis in Sweet Sorghum and Selection of a New Sweet Sorghum Hybrid for Use in Syrup Production in Appalachia All Rights Reserved,” Crop Science, Vol. 50, No. 5, 2010, pp. 1788-1794. doi:10.2135/cropsci2009.09.0475
[22] A. J. Maves and R. E. Atkins, “Agronomic Performance of Sorghum Hybrids Produced by Using Different MaleSterility-Inducing Cytoplasm,” Journal of Iowa Academy of Science, Vol. 95, 1988, pp. 43-46.
[23] A. G. Kishan and S. T. Borikar, “Line × Tester Analysis Involving Diverse Cytoplasmic Systems in Sorghum,” Plant Breeding, Vol. 102, No. 2, 1989, pp. 153-157. doi:10.1111/j.1439-0523.1989.tb00329.x
[24] R. E. Secrist and R. E. Atkins, “Pollen Fertility and Agronomic Performance of Sorghum Hybrids with Different Male-Sterility-Inducing Cytoplasms,” Journal of Iowa Academy of Science, Vol. 96, 1989, pp. 99-103.
[25] J. L. Moran and W. L. Rooney, “Effect of Cytoplasm on the Agronomic Performance of Grain Sorghum Hybrids,” Crop Science, Vol. 43, No. 3, 2003, pp. 777-781. doi:10.2135/cropsci2003.0777
[26] J. F. Pedersen and J. J. Toy, “Forage Yield, Quality, and Fertility of Sorghum × Sudan Grass Hybrids in A1 and A3 Cytoplasm,” Crop Science, Vol. 37, No. 6, 1997, pp. 1973-1975. doi:10.2135/cropsci1997.0011183X003700060049x
[27] J. C. Stephens and R. E. Karper, “Release of Breeding Stocks of Male Sterilized Grain Sorghum Lines,” 1965.
[28] W. L. Rooney and S. Aydin, “Genetic Control of a Photoperiod-Sensitive Response in Sorghum bicolor (L.) Moench,” Crop Science, Vol. 39, No. 2, 1999, pp. 397-400. doi:10.2135/cropsci1999.0011183X0039000200016x
[29] S. N. Olson, K. Ritter, W. L. Rooney, A. Kemanian, B. A. McCarl, Y. Zhang, H. Susan, D. Packer and J. Mullet, “Energy Sorghum: A Genetic Model for C4 Grass Bioenergy Crops,” Biofuels, Bioproducts & Biorefining, Vol. 6, No. 6, 2012, pp. 640-655.
[30] E. Wolfrum, C. Payne, T. Stefaniak, W. L. Rooney, N. Dighe, B. Bean and J. Dahlberg, “Multivariate Calibration Models for Sorghum Composition Using Near-Infrared Spectroscopy,” Technical Report NREL/TP-510056838, 2013, pp. 1-14.
[31] D. Packer, “High-Biomass Sorghums for Biomass Fuel Production,” Soil and Crop Sciences, Texas A & M University, College Station, 2011.
[32] R. D. Lee, B. E. Johnson, K. M. Eskridge and J. F. Pedersen, “Selectin of Superior Female Parents in Sorghum Utilizing A3 Cytoplasm,” Crop Science, Vol. 32, No. 4, 1992, pp. 918-921. doi:10.2135/cropsci1992.0011183X003200040016x

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.